

Brownie

	Overview
	Features

	Quickstart
	Creating a New Project

	Exploring the Project

	Compiling your Contracts

	Core Functionality

	Writing Scripts

	Testing your Project

Getting Started

	Installing Brownie
	Dependencies

	Creating a New Project
	Creating an Empty Project

	Creating a Project from a Template

	Structure of a Project
	contracts/

	interfaces/

	scripts/

	tests/

	brownie-config.yaml

	Compiling Contracts
	Supported Languages

	Interfaces

	Compiler Settings

	Installing the Compiler

	Interacting with your Contracts
	Using the Console

	Writing Scripts

	Writing Tests

	The Brownie GUI
	Getting Started

	Working with Opcodes

	Viewing Reports

	Report JSON Format

Core Functionality

	Working with Accounts

	Working with Contracts
	Deploying Contracts

	Interacting with your Contracts

	Contracts Outside of your Project

	Inspecting and Debugging Transactions
	Event Data

	Internal Transactions and Deployments

	Debugging Failed Transactions

	Inspecting the Trace

	Accessing Transaction History

	Unconfirmed Transactions

	The Local Test Environment
	Mining

	Time

	Snapshots

	Data Types
	Wei

	Fixed

Testing

	Writing Unit Tests
	Getting Started

	Fixtures

	Handling Reverted Transactions

	Parametrizing Tests

	Running Tests

	Pytest Fixtures Reference
	Session Fixtures

	Contract Fixtures

	Isolation Fixtures

	Coverage Fixtures

	Property-Based Testing
	What is Property-Based Testing?

	Writing Tests

	Strategies

	Settings

	Stateful Testing
	Rule-based State Machines

	Test Execution Sequence

	Writing Stateful Tests

	Running Stateful Tests

	Coverage Evaluation
	Viewing Coverage Data

	How Coverage Evaluation Works

	Improving Performance

	Security Analysis with MythX
	Authentication

	Scanning for Vulnerabilities

	Viewing Analysis Results

Networks and Deployment

	Deployment Basics
	Writing a Deployment Script

	Running your Deployment Script

	Interacting with Deployed Contracts

	Using Non-Local Networks
	Personal Node vs Hosted Node

	Network Configuration

	Launching and Connecting to Networks

	Managing Local Accounts
	Account Management

	Unlocking Accounts

	The Ethereum Package Manager
	Registry URIs

	Working with ethPM Packages

	Creating and Releasing a Package

	Interacting with Package Deployments

Reference

	The Configuration File
	Settings

	The Build Folder
	Compiler Artifacts

	Deployment Artifacts

	Test Results and Coverage Data

	Installed ethPM Package Data

	Brownie as a Python Package
	Loading a Project

	Loading Project Config Settings

	Accessing the Network

	Brownie API
	brownie

	brownie.convert

	brownie.network

	brownie.project

	brownie.test

	brownie.utils

Brownie

Brownie is a Python-based development and testing framework for smart contracts targeting the Ethereum Virtual Machine [https://solidity.readthedocs.io/en/v0.6.0/introduction-to-smart-contracts.html#the-ethereum-virtual-machine].

Note

All code starting with $ is meant to be run on your terminal. Code starting with >>> is meant to run inside the Brownie console.

Note

This project relies heavily upon web3.py and the documentation assumes a basic familiarity with it. You may wish to view the Web3.py docs [https://web3py.readthedocs.io/en/stable/index.html] if you have not used it previously.

Features

	Full support for Solidity [https://github.com/ethereum/solidity] and Vyper [https://github.com/vyperlang/vyper]

	Contract testing via pytest [https://github.com/pytest-dev/pytest], including trace-based coverage evaluation

	Property-based and stateful testing via hypothesis [https://github.com/HypothesisWorks/hypothesis/tree/master/hypothesis-python]

	Powerful debugging tools, including python-style tracebacks and custom error strings

	Built-in console for quick project interaction

	Support for ethPM [https://www.ethpm.com] packages

Quickstart

This page provides a quick overview of how to use Brownie. It relies mostly on examples and assumes a level of familiarity with Python and smart contract dvelopment. For more in-depth content, you should read the documentation sections under “Getting Started” in the table of contents.

If you have any questions about how to use Brownie, feel free to ask on Ethereum StackExchange [https://ethereum.stackexchange.com/] or join us on Gitter [https://gitter.im/eth-brownie/community].

Creating a New Project

Main article: Creating a New Project

The first step to using Brownie is to initialize a new project. To do this, create an empty folder and then type:

$ brownie init

You can also initialize “Brownie mixes [https://github.com/brownie-mix]”, simple templates to build your project upon. For the examples in this document we will use the token [https://github.com/brownie-mix/token-mix] mix, which is a very basic ERC-20 implementation:

$ brownie bake token

This will create a token/ subdirectory, and download the template project within it.

Exploring the Project

Main article: Structure of a Project

Each Brownie project uses the following structure:

	contracts/: Contract sources

	interfaces/: Interface sources

	scripts/: Scripts for deployment and interaction

	tests/: Scripts for testing the project

	brownie-config.yaml: Configuration file for the project

The following directories are also created, and used internally by Brownie for managing the project. You should not edit or delete files within these folders.

	build/: Project data such as compiler artifacts and unit test results

	reports/: JSON report files for use in the GUI

Compiling your Contracts

Main article: Compiling Contracts

To compile your project:

$ brownie compile

You will see the following output:

Brownie - Python development framework for Ethereum

Compiling contracts...
Optimizer: Enabled Runs: 200
- Token.sol...
- SafeMath.sol...
Brownie project has been compiled at token/build/contracts

You can change the compiler version and optimization settings by editting the config file.

Note

Brownie automatically compiles any new or changed source files each time it is loaded. You do not need to manually run the compiler.

Core Functionality

The console is useful when you want to interact directly with contracts deployed on a non-local chain, or for quick testing as you develop. It’s also a great starting point to familiarize yourself with Brownie’s functionality.

The console feels very similar to a regular python interpreter. From inside a project directory, load it by typing:

$ brownie console

Brownie will compile your contracts, start the local RPC client, and give you a command prompt. From here you may interact with the network with the full range of functionality offered by the Brownie API.

Hint

You can call the builtin dir [https://docs.python.org/3.8/library/functions.html#dir] method to see available methods and attributes for any class. Classes, methods and attributes are highlighted in different colors.

You can also call help [https://docs.python.org/3.8/library/functions.html#help] on any class or method to view information on it’s functionality.

Accounts

Main article: Working with Accounts

Access to local accounts is through accounts, a list-like object that contains Account objects capable of making transactions.

Here is an example of checking a balance and transfering some ether:

>>> accounts[0]
<Account object '0xC0BcE0346d4d93e30008A1FE83a2Cf8CfB9Ed301'>
>>> accounts[1].balance()
100000000000000000000
>>> accounts[0].transfer(accounts[1], "10 ether")

Transaction sent: 0x124ba3f9f9e5a8c5e7e559390bebf8dfca998ef32130ddd114b7858f255f6369
Transaction confirmed - block: 1 gas spent: 21000
<Transaction object '0x124ba3f9f9e5a8c5e7e559390bebf8dfca998ef32130ddd114b7858f255f6369'>
>>> accounts[1].balance()
110000000000000000000

Contracts

Main article: Working with Contracts

Brownie provides a ContractContainer object for each deployable contract in your project. They are list-like objects used to deploy new contracts.

>>> Token
[]
>>> Token.deploy
<ContractConstructor object 'Token.constructor(string _symbol, string _name, uint256 _decimals, uint256 _totalSupply)'>
>>> t = Token.deploy("Test Token", "TST", 18, 1e20, {'from': accounts[1]})

Transaction sent: 0x2e3cab83342edda14141714ced002e1326ecd8cded4cd0cf14b2f037b690b976
Transaction confirmed - block: 1 gas spent: 594186
Contract deployed at: 0x5419710735c2D6c3e4db8F30EF2d361F70a4b380
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>>
>>> t
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

When a contact is deployed you are returned a Contract object that can be used to interact with it. This object is also added to the ContractContainer.

Contract objects contain class methods for performing calls and transactions. In this example we are checking a token balance and transfering tokens:

>>> t
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>> t.balanceOf(accounts[1])
1000000000000000000000

>>> t.transfer
<ContractTx object 'transfer(address _to, uint256 _value)'>
>>> t.transfer(accounts[2], 1e20, {'from': accounts[1]})

Transaction sent: 0xcd98225a77409b8d81023a3a4be15832e763cd09c74ff431236bfc6d56a74532
Transaction confirmed - block: 2 gas spent: 51241
<Transaction object '0xcd98225a77409b8d81023a3a4be15832e763cd09c74ff431236bfc6d56a74532'>
>>>
>>> t.balanceOf(accounts[1])
900000000000000000000
>>> t.balanceOf(accounts[2])
100000000000000000000

Transactions

Main article: Inspecting and Debugging Transactions

The TransactionReceipt object contains all relevant information about a transaction, as well as various methods to aid in debugging.

>>> tx = Token[0].transfer(accounts[1], 1e18, {'from': accounts[0]})

Transaction sent: 0x0d96e8ceb555616fca79dd9d07971a9148295777bb767f9aa5b34ede483c9753
Token.transfer confirmed - block: 2 gas used: 51019 (33.78%)

>>> tx
<Transaction object '0x0d96e8ceb555616fca79dd9d07971a9148295777bb767f9aa5b34ede483c9753'>

To examine the events that fired:

>>> tx.events()

>>> len(tx.events)

>>> 'Transfer' in tx.events
True
>>> tx.events['Transfer']
{
 'from': "0x4fe357adbdb4c6c37164c54640851d6bff9296c8",
 'to': "0xfae9bc8a468ee0d8c84ec00c8345377710e0f0bb",
 'value': "1000000000000000000",
}

To inspect the transaction trace:

>>> tx.call_trace()
Call trace for '0x0d96e8ceb555616fca79dd9d07971a9148295777bb767f9aa5b34ede483c9753':
Token.transfer 0:244 (0x4A32104371b05837F2A36dF6D850FA33A92a178D)
 ∟ Token.transfer 72:226
 ∟ SafeMath.sub 100:114
 ∟ SafeMath.add 149:165

For information on why a transaction reverted:

>>> tx = Token[0].transfer(accounts[1], 1e18, {'from': accounts[3]})

Transaction sent: 0x5ff198f3a52250856f24792889b5251c120a9ecfb8d224549cb97c465c04262a
Token.transfer confirmed (reverted) - block: 2 gas used: 23858 (19.26%)
<Transaction object '0x5ff198f3a52250856f24792889b5251c120a9ecfb8d224549cb97c465c04262a'>

>>> tx.traceback()
Traceback for '0x5ff198f3a52250856f24792889b5251c120a9ecfb8d224549cb97c465c04262a':
Trace step 99, program counter 1699:
 File "contracts/Token.sol", line 67, in Token.transfer:
 balances[msg.sender] = balances[msg.sender].sub(_value);
Trace step 110, program counter 1909:
 File "contracts/SafeMath.sol", line 9, in SafeMath.sub:
 require(b <= a);

Writing Scripts

Main article: Writing Scripts

You can write scripts to automate contract deployment and interaction. By placing from brownie import * at the beginning of your script, you can access objects identically to how you would in the console.

To execute the main function in a script, store it in the scripts/ folder and type:

$ brownie run [script name]

Within the token project, you will find an example script at scripts/token.py [https://github.com/brownie-mix/token-mix/blob/master/scripts/token.py] that is used for deployment:

	1
2
3
4

	from brownie import *

def main():
 Token.deploy("Test Token", "TEST", 18, 1e23, {'from': accounts[0]})

Testing your Project

Main article: Writing Unit Tests

Brownie uses the pytest framework for contract testing.

Tests should be stored in the tests/ folder. To run the full suite:

$ brownie test

Fixtures

Brownie provides pytest fixtures to allow you to interact with your project and to aid in testing. To use a fixture, add an argument with the same name to the inputs of your test function.

Here is an example test function using Brownie’s automatically generated fixtures:

	1
2
3
4
5
6
7

	def test_transfer(Token, accounts):
 token = Token.deploy("Test Token", "TST", 18, 1e20, {'from': accounts[0]})
 assert token.totalSupply() == 1e20

 token.transfer(accounts[1], 1e19, {'from': accounts[0]})
 assert token.balanceOf(accounts[1]) == 1e19
 assert token.balanceOf(accounts[0]) == 9e19

A complete list of Brownie fixtures is available here.

Handling Reverted Transactions

Transactions that revert raise a VirtualMachineError exception. To write assertions around this you can use brownie.reverts as a context manager, which functions very similarly to pytest.raises [https://docs.pytest.org/en/latest/reference.html#pytest.raises]:

	1
2
3
4
5
6

	import brownie

def test_transfer_reverts(accounts, Token):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e23)
 with brownie.reverts():
 token.transfer(accounts[1], 1e24, {'from': accounts[0]})

You may optionally include a string as an argument. If given, the error string returned by the transaction must match it in order for the test to pass.

	1
2
3
4
5
6

	import brownie

def test_transfer_reverts(accounts, Token):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e23)
 with brownie.reverts("Insufficient Balance"):
 token.transfer(accounts[1], 1e24, {'from': accounts[0]})

Isolating Tests

Test isolation is handled through the module_isolation and fn_isolation fixtures:

	module_isolation resets the local chain before and after completion of the module, ensuring a clean environment for this module and that the results of it will not affect subsequent modules.

	fn_isolation additionally takes a snapshot of the chain before running each test, and reverts to it when the test completes. This allows you to define a common state for each test, reducing repetitive transactions.

This example uses isolation and a shared setup fixture. Because the token fixture uses a session scope, the transaction to deploy the contract is only executed once.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	import pytest
from brownie import accounts

@pytest.fixture(scope="module")
def token(Token):
 yield Token.deploy("Test Token", "TST", 18, 1e20, {'from': accounts[0]})

def test_transferFrom(fn_isolation, token):
 token.approve(accounts[1], 6e18, {'from': accounts[0]})
 token.transferFrom(accounts[0], accounts[2], 5e18, {'from': accounts[1]})

 assert token.balanceOf(accounts[2]) == 5e18
 assert token.balanceOf(accounts[0]) == 9.5e19
 assert token.allowance(accounts[0], accounts[1]) == 1e18

def test_balance_allowance(fn_isolation, token):
 assert token.balanceOf(accounts[0]) == 1e20
 assert token.allowance(accounts[0], accounts[1]) == 0

Installing Brownie

The easiest way to install Brownie is via pip.

$ pip install eth-brownie

You can also clone the github repository [https://github.com/iamdefinitelyahuman/brownie] and use setuptools for the most up-to-date version.

$ python3 setup.py install

Once you have installed, type brownie to verify that it worked:

$ brownie
Brownie - Python development framework for Ethereum

Usage: brownie <command> [<args>...] [options <args>]

Dependencies

Brownie has the following dependencies:

	ganache-cli [https://github.com/trufflesuite/ganache-cli] - tested with version 6.8.2 [https://github.com/trufflesuite/ganache-cli/releases/tag/v6.8.2]

	pip [https://pypi.org/project/pip/]

	python3 [https://www.python.org/downloads/release/python-368/] version 3.6 or greater, python3-dev

As brownie relies on py-solc-x [https://github.com/iamdefinitelyahuman/py-solc-x], you do not need solc installed locally but you must install all required solc dependencies [https://solidity.readthedocs.io/en/latest/installing-solidity.html#binary-packages].

Tkinter

The Brownie GUI is built using the Tk GUI toolkit [https://tcl.tk/]. Both Tk and tkinter [https://docs.python.org/3.8/library/tkinter.html] are available on most Unix platforms, as well as on Windows systems.

Tk is not a strict dependency for Brownie. However, if it is not installed on your system you will receive an error when attempting to load the GUI.

You can use the following command to check that Tk has been correctly installed:

$ python -m tkinter

This should open a simple window and display the installed version number.

For installation instructions read Installing TK [https://tkdocs.com/tutorial/install.html] within the TK Documentation.

Creating a New Project

The first step to using Brownie is to initialize a new project. This can be done in two ways:

	Create an empty project using brownie init.

	Create a project from an existing template using brownie bake.

Creating an Empty Project

To initialize an empty project, start by creating a new folder. From within that folder, type:

$ brownie init

An empty project structure is created within the folder.

Creating a Project from a Template

You can initialize “Brownie mixes [https://github.com/brownie-mix]”, simple templates to build your project upon. For many examples within the Brownie documentation we will use the token [https://github.com/brownie-mix/token-mix] mix, which is a very basic ERC-20 implementation.

Mixes are automatically created within a subfolder of their name. To initialize the token mix:

$ brownie bake token

This creates a new folder token/ and deploys the project inside it.

The Continuous Integration Template

Travis-Mix [https://github.com/brownie-mix/travis-mix] is a template preconfigured for use with Travis-CI [https://travis-ci.com/] continuous integration, as well as other useful tools.

To initialize from this mix:

$ brownie bake travis

See the Travis-Mix Github repo [https://github.com/brownie-mix/travis-mix] for a detailed explanation of how to configure and use the tools within this template.

Structure of a Project

Every Brownie project includes the following folders:

	contracts/: Contract sources

	interfaces/: Interface sources

	scripts/: Scripts for deployment and interaction

	tests/: Scripts for testing the project

	brownie-config.yaml: Configuration file for the project

The following folders are also created, and used internally by Brownie for managing the project. You should not edit or delete files within these folders.

	build/: Project data such as compiler artifacts and unit test results

	reports/: JSON report files for use in the GUI

See The Build Folder for more information about Brownie internal project folders.

contracts/

The contracts folder holds all contract source files for the project. Each time Brownie is run, it checks for new or modified files within this folder. If any are found, they are compiled and included within the project.

Contracts may be written in Solidity (with a .sol extension) or Vyper (with a .vy extension).

interfaces/

The interfaces folder holds interface source files that may be referenced by contract sources, but which are not considered to be primary components of the project. Adding or modifying an interface source onlys triggers a recompile if the interface is required by a contract.

Interfaces may be written in Solidity [https://solidity.readthedocs.io/en/latest/contracts.html#interfaces] (.sol) or Vyper [https://vyper.readthedocs.io/en/latest/structure-of-a-contract.html#contract-interfaces] (.vy), or supplied as a JSON encoded ABI [https://solidity.readthedocs.io/en/latest/abi-spec.html#json] (.json).

scripts/

The scripts folder holds Python scripts used for deploying contracts, or to automate common tasks and interactions. These scripts are executed via the brownie run command.

See the Brownie Scripts documentation for more information on Brownie scripts.

tests/

The tests folder holds Python scripts used for testing a project. Brownie uses the pytest [https://docs.pytest.org/en/latest/] framework for unit testing.

See Brownie Pytest documentation for more information on testing a project.

brownie-config.yaml

The brownie-config.yaml file holds all the configuration settings for a project. See The Configuration File for more information.

Compiling Contracts

To compile all of the contract sources within the contracts/ subfolder of a project:

$ brownie compile

Each time the compiler runs, Brownie compares hashes of each contract source against hashes of the existing compiled versions. If a contract has not changed it is not recompiled. If you wish to force a recompile of the entire project, use brownie compile --all.

If one or more contracts are unable to compile, Brownie raises an exception with information about why the compilation failed. You cannot use Brownie with a project as long as compilation is failing. You can temporarily exclude a file or folder from compilation by adding an underscore (_) to the start of the name.

Supported Languages

Brownie supports Solidity (>=0.4.22) and Vyper (0.1.0-b16). The file extension determines which compiler is used:

	Solidity: .sol

	Vyper: .vy

Interfaces

Project contracts can import interfaces from the interfaces/ subfolder. Interfaces are not considered primary components of a project. Adding or modifying an interface only triggers a recompile if a contract is dependent upon that interface.

The interfaces/ folder is of particular use in the following situations:

	When using Vyper, where interfaces are not necessarily compilable source code and so cannot be included in the contracts/ folder.

	When using Solidity and Vyper in the same project, or multiple versions of Solidity, where compatibility issues prevent contracts from directly referencing one another.

Interfaces may be written in Solidity [https://solidity.readthedocs.io/en/latest/contracts.html#interfaces] (.sol) or Vyper [https://vyper.readthedocs.io/en/latest/structure-of-a-contract.html#contract-interfaces] (.vy). Vyper contracts are also able to directly import JSON encoded ABI [https://solidity.readthedocs.io/en/latest/abi-spec.html#json] (.json) files.

Compiler Settings

Settings for the compiler are found in brownie-config.yaml:

evm_version: null
minify_source: false
solc:
 version: 0.6.0
 optimize: true
 runs: 200

Modifying any compiler settings will result in a full recompile of the project.

Setting the Compiler Version

Note

Brownie supports Solidity versions >=0.4.22 and Vyper version 0.1.0-b16.

If a compiler version is set in the configuration file, all contracts in the project are compiled using that version. It is installed automatically if not already present. The version should be given as a string in the format 0.x.x.

If the version is set to null, Brownie looks at the version pragma [https://solidity.readthedocs.io/en/latest/layout-of-source-files.html#version-pragma] of each contract and uses the latest matching compiler version that has been installed. If no matching version is found, the most recent release is installed.

Setting the version via pragma allows you to use multiple versions in a single project. When doing so, you may encounter compiler errors when a contract imports another contract that is meant to compile on a higher version. A good practice in this situation is to import interfaces [https://solidity.readthedocs.io/en/latest/contracts.html#interfaces] rather than actual contracts, and set all interface pragmas as >=0.4.22.

The EVM Version

By default evm_version is set to null. Brownie sets the ruleset based on the compiler:

	byzantium: Solidity <=0.5.4

	petersburg: Solidity >=0.5.5 <=0.5.12

	istanbul: Solidity >=0.5.13, Vyper

You can also set the EVM version manually. Valid options are byzantium, constantinople, petersburg and istanbul. You can also use the Ethereum Classic rulesets atlantis and agharta, which are converted to their Ethereum equivalents prior to being passed to the compiler.

See the Solidity EVM documentation [https://solidity.readthedocs.io/en/latest/using-the-compiler.html#setting-the-evm-version-to-target] or Vyper EVM documentation [https://vyper.readthedocs.io/en/latest/compiling-a-contract.html#setting-the-target-evm-version] for more info on the different EVM versions and how they affect compilation.

Compiler Optimization

Compiler optimization is enabled by default. Coverage evaluation was designed using optimized contracts, there is no need to disable it during testing.

See the Solidity documentation [https://solidity.readthedocs.io/en/latest/miscellaneous.html#internals-the-optimiser] for more info on the solc optimizer.

Source Minification

If minify_source is true, the contract source is minified before compiling. Each time Brownie is loaded it will then minify the current source code before checking the hashes to determine if a recompile is necessary. This allows you to modify code formatting and comments without triggering a recompile, at the cost of increased load times from recalculating source offsets.

Installing the Compiler

If you wish to manually install a different version of solc:

>>> from brownie.project.compiler import install_solc
>>> install_solc("0.5.10")

Interacting with your Contracts

Brownie has three main components that you can use while developing your project:

	The console is useful for quick testing and debugging.

	Scripts allow you to automate common tasks and handle deployments.

	Tests help to ensure that your contracts are executing as intended.

Using the Console

The console is useful when you want to interact directly with contracts deployed on a non-local chain, or for quick testing as you develop. It’s also a great starting point to familiarize yourself with Brownie’s functionality.

The console feels very similar to a regular python interpreter. From inside a project directory, load it by typing:

$ brownie console

Brownie will compile the contracts, launch or attach to the local test environment, and then give you a command prompt. From here you may interact with the network with the full range of functionality offered by the Brownie API.

Hint

You can call the builtin dir [https://docs.python.org/3.8/library/functions.html#dir] method to see available methods and attributes for any class. Classes, methods and attributes are highlighted in different colors.

You can also call help [https://docs.python.org/3.8/library/functions.html#help] on any class or method to view information on it’s functionality.

Writing Scripts

Along with the console, you can write scripts for quick testing or to automate common processes. Scripting is also useful when deploying your contracts to a non-local network.

Scripts are stored in the scripts/ directory within your project.

Layout of a Script

Brownie scripts use standard Python syntax, but there are a few things to keep in mind in order for them to execute properly.

Import Statements

Unlike the console where all of Brownie’s objects are already available, in a script you must first import them. The simplest way to do this is via a wildcard import:

from brownie import *

This imports the instantiated project classes into the local namespace and gives access to the Brownie API in exactly the same way as if you were using the console.

Alternatively you may wish to only import exactly the classes and methods required by the script. For example:

from brownie import Token, accounts

This makes available the accounts and Token containers, which is enough to deploy a contract.

Functions

Each script can contain as many functions as you’d like. When executing a script, brownie attempts to run the main function if no other function name is given.

Running Scripts

To execute a script from the command line:

$ brownie run <script> [function]

From the console, you can use the run method:

>>> run('token') # executes the main() function within scripts/token.py

You can also import and call the script directly:

>>> from scripts.token import main
>>> main()

Examples

Here is a simple example script from the token project, used to deploy the Token contract from contracts/Token.sol using web3.eth.accounts[0].

	1
2
3
4

	from brownie import Token, accounts

def main():
 Token.deploy("Test Token", "TST", 18, 1e23, {'from': accounts[0]})

And here is an expanded version of the same script, that includes a simple method for distributing tokens.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from brownie import Token, accounts

def main():
 token = Token.deploy("Test Token", "TST", 18, 1e23, {'from': accounts[0]})
 return token

def distribute_tokens(sender=accounts[0], receiver_list=accounts[1:]):
 token = main()
 for receiver in receiver_list:
 token.transfer(receiver, 1e18, {'from': sender})

Writing Tests

Brownie leverages pytest and hypothesis to provide a robust framework for testing your contracts.

Test scripts are stored in the tests/ directory of your project. To run the complete test suite:

$ brownie test

To learn more about writing tests in Brownie, you should start by reviewing the Brownie Pytest documentation.

The Brownie GUI

Brownie includes a GUI for viewing test coverage data and analyzing the compiled bytecode of your contracts.

Parts of this section assume a level of familiarity with EVM bytecode. If you are looking to learn more about the subject, Alejandro Santander from OpenZeppelin [https://openzeppelin.com/] has written an excellent guide - Deconstructing a Solidity Contract [https://blog.openzeppelin.com/deconstructing-a-solidity-contract-part-i-introduction-832efd2d7737/].

Note

If you receive an error when attempting to load the GUI, you probably do not have Tk installed on your system. See the Tk installation instrucions for more detailed information.

Getting Started

To open the GUI, run the following command from within your project folder:

$ brownie gui

Or from the console:

>>> Gui()

Once loaded, the first thing you’ll want to do is choose a contract to view. To do this, click on the drop-down list in the upper right that says “Select a Contract”. You will see a list of every deployable contract within your project.

Once selected, the contract source code is displayed in the main window with a list of opcodes and program counters on the right. If the contract inherits from more than one source file, tabs will be available to switch between sources. For example, in the image below the Token contract includes both Token.sol and SafeMath.sol:

[image: The Brownie GUI]

Working with Opcodes

Mapping Opcodes to Source

Highlighting a section of code will also highlight the instructions that are associated with it. Similarly, selecting on an instruction will highlight the related source.

Click the Scope button in the top left (or the S key) to filter the list of instructions such that only those contained within the highlighted source are shown.

Note

Opcodes displayed with a dark background are not mapped to any source, or are mapped to the source of the entire contract. These are typically the result of compiler optimization or part of the initial function selector.

[image: Mapping Opcodes to Source]

Jump Instructions

Click the Console button in the top left (or press the C key) to expand the console. It shows more detailed information about the highlighted instruction.

	When you select a JUMP or JUMPI instruction, the console includes a “Target:” field that gives the program counter for the related JUMPDEST, where possible. The related JUMPDEST is also highlighted in green. Press the J key to show the instruction.

	When you select a JUMPDEST instruction, the console includes a “Jumps:” field that gives a list of program counters that point at the highlighted instruction. Each related JUMP/JUMPI is also highlighted in green.

[image: Jump Instructions]

Miscellaneous

	Right clicking on an instruction will apply a yellow highlight to all instructions of the same opcode type.

	Press the R key to toggle highlight on all REVERT opcodes.

Viewing Reports

Actions such as coverage evaluation and security analysis produce report files within the reports/ directory of your project. To examine a report:

	click on the drop-down list in the upper right that says “Select Report”

	Select the report file you wish to view.

	A new drop-down list will appear where you can select which report to display.

Some reports will include additional information that is displayed in the GUI console when you hover the mouse over a related section.

Here is an example of a coverage analysis report:

[image: Viewing Coverage Data]

Report JSON Format

Third party tools can generate reports for display in the Brownie GUI. Reports must be saved in the reports/ directory of a project. Brownie expects reports to be JSON encoded and use the following structure:

{
 "highlights": {
 // this name is shown in the report type drop-down menu
 "<Report Type>": {
 "ContractName": {
 "path/to/sourceFile.sol": [
 // start offset, stop offset, color, optional message
 [123, 440, "green", ""],
 [502, 510, "red", ""],
]
 }
 }
 },
 "sha1": {} // optional, not yet implemented
}

The final item in each highlight offset is an optional message to be displayed. If included, the text given here will be shown in the GUI console when the user hovers the mouse over the highlight. To not show a message, set it to "" or null.

Working with Accounts

The Accounts container (available as accounts or just a) allows you to access all your local accounts.

>>> accounts
['0xC0BcE0346d4d93e30008A1FE83a2Cf8CfB9Ed301', '0xf414d65808f5f59aE156E51B97f98094888e7d92', '0x055f1c2c9334a4e57ACF2C4d7ff95d03CA7d6741', '0x1B63B4495934bC1D6Cb827f7a9835d316cdBB332', '0x303E8684b9992CdFA6e9C423e92989056b6FC04b', '0x5eC14fDc4b52dE45837B7EC8016944f75fF42209', '0x22162F0D8Fd490Bde6Ffc9425472941a1a59348a', '0x1DA0dcC27950F6070c07F71d1dE881c3C67CEAab', '0xa4c7f832254eE658E650855f1b529b2d01C92359','0x275CAe3b8761CEdc5b265F3241d07d2fEc51C0d8']
>>> accounts[0]
<Account object '0xC0BcE0346d4d93e30008A1FE83a2Cf8CfB9Ed301'>

Each individual account is represented by an Account object that can perform actions such as querying a balance or sending ETH.

>>> accounts[0]
<Account object '0xC0BcE0346d4d93e30008A1FE83a2Cf8CfB9Ed301'>
>>> dir(accounts[0])
[address, balance, deploy, estimate_gas, nonce, transfer]

The Account.balance method is used to check the balance of an account. The value returned is denominated in wei.

>>> accounts[1].balance()
100000000000000000000

The Account.transfer method is used to send ether between accounts and perform other simple transactions. As shown in the example below, the amount to transfer may be specified as a string that is converted by Wei.

>>> accounts[0].transfer(accounts[1], "10 ether")

Transaction sent: 0x124ba3f9f9e5a8c5e7e559390bebf8dfca998ef32130ddd114b7858f255f6369
Transaction confirmed - block: 1 gas spent: 21000
<Transaction object '0x124ba3f9f9e5a8c5e7e559390bebf8dfca998ef32130ddd114b7858f255f6369'>
>>> accounts[1].balance()
110000000000000000000

Working with Contracts

Deploying Contracts

Each time Brownie is loaded it will automatically compile your project and create ContractContainer objects for each deployable contract. This object is a container used to access individual deployments. It is also used to deploy new contracts.

>>> Token
[]
>>> type(Token)
<class 'brownie.network.contract.ContractContainer'>
>>> Token.deploy
<ContractConstructor object 'Token.constructor(string _symbol, string _name, uint256 _decimals, uint256 _totalSupply)'>

ContractContainer.deploy is used to deploy a new contract.

>>> Token.deploy
<ContractConstructor object 'Token.constructor(string _symbol, string _name, uint256 _decimals, uint256 _totalSupply)'>

It must be called with the contract constructor arguments, and a dictionary of transaction parameters containing a from field that specifies which Account to deploy the contract from.

>>> Token.deploy("Test Token", "TST", 18, 1e23, {'from': accounts[1]})

Transaction sent: 0x2e3cab83342edda14141714ced002e1326ecd8cded4cd0cf14b2f037b690b976
Transaction confirmed - block: 1 gas spent: 594186
Contract deployed at: 0x5419710735c2D6c3e4db8F30EF2d361F70a4b380
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

Calling ContractContainer.deploy returns a Contract object. The returned object is also appended to the ContractContainer.

>>> t = Token.deploy("Test Token", "TST", 18, 1e23 {'from': accounts[1]})

Transaction sent: 0x2e3cab83342edda14141714ced002e1326ecd8cded4cd0cf14b2f037b690b976
Transaction confirmed - block: 1 gas spent: 594186
Contract deployed at: 0x5419710735c2D6c3e4db8F30EF2d361F70a4b380
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

>>> t
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>> Token
[<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>]

Unlinked Libraries

If a contract requires a library [https://solidity.readthedocs.io/en/v0.6.0/contracts.html#libraries], Brownie will automatically link to the most recently deployed one. If the required library has not been deployed yet an UndeployedLibrary exception is raised.

>>> MetaCoin.deploy({'from': accounts[0]})
 File "brownie/network/contract.py", line 167, in __call__
 f"Contract requires '{library}' library but it has not been deployed yet"
UndeployedLibrary: Contract requires 'ConvertLib' library but it has not been deployed yet

>>> Convert.deploy({'from': accounts[0]})
Transaction sent: 0xff3f5cff35c68a73658ad367850b6fa34783b4d59026520bd61b72b6613d871c
ConvertLib.constructor confirmed - block: 1 gas used: 95101 (48.74%)
ConvertLib deployed at: 0x08c4C7F19200d5636A1665f6048105b0686DFf01
<ConvertLib Contract object '0x08c4C7F19200d5636A1665f6048105b0686DFf01'>

>>> MetaCoin.deploy({'from': accounts[0]})
Transaction sent: 0xd0969b36819337fc3bac27194c1ff0294dd65da8f57c729b5efd7d256b9ecfb3
MetaCoin.constructor confirmed - block: 2 gas used: 231857 (69.87%)
MetaCoin deployed at: 0x8954d0c17F3056A6C98c7A6056C63aBFD3e8FA6f
<MetaCoin Contract object '0x8954d0c17F3056A6C98c7A6056C63aBFD3e8FA6f'>

Interacting with your Contracts

Once a contract has been deployed, you can interact with it via via calls and transactions.

	Transactions are broadcast to the network and recorded on the blockchain. They cost ether to run, and are able to alter the state to the blockchain.

	Calls are used to execute code on the network without broadcasting a transaction. They are free to run, and cannot alter the state of the blockchain in any way. Calls are typically used to retrieve a storage value from a contract using a getter method.

You may call or send a transaction to any public function within a contract. However, depending on the code, there is always a preferred method:

	In Solidity, callable methods are labelled as view [https://solidity.readthedocs.io/en/v0.6.0/contracts.html#view-functions] or pure [https://solidity.readthedocs.io/en/v0.6.0/contracts.html#pure-functions]

	In Vyper, callable methods include the @constant [https://vyper.readthedocs.io/en/latest/structure-of-a-contract.html#decorators] decorator.

All public contract methods are available from the Contract object via class methods of the same name.

>>> Token[0].transfer
<ContractTx object 'transfer(address _to, uint256 _value)'>
>>> Token[0].balanceOf
<ContractCall object 'balanceOf(address _owner)'>

Transactions

State-changing contract methods are called via a ContractTx object. This object performs a transaction and returns a TransactionReceipt.

You may optionally include a dictionary of transaction parameters as the final argument. If you do not do this, or do not specify a from value within the parameters, the transaction is sent from the same address that deployed the contract.

>>> Token[0].transfer(accounts[1], 1e18, {'from': accounts[0]})

Transaction sent: 0x6e557594e657faf1270235bf4b3f27be7f5a3cb8a9c981cfffb12133cbaa165e
Token.transfer confirmed - block: 4 gas used: 51019 (33.78%)
<Transaction object '0x6e557594e657faf1270235bf4b3f27be7f5a3cb8a9c981cfffb12133cbaa165e'>

If you wish to call the contract method without a transaction, use the ContractTx.call method.

>>> Token[0].transfer.call(accounts[1], 1e18, {'from': accounts[0]})
True

Transaction Parameters

When executing a transaction to a contract, you can optionally include a dict [https://docs.python.org/3.8/library/stdtypes.html#dict] of transaction parameters as the final input. It may contain the following values:

	from: the Account that the transaction it sent from. If not given, the transaction is sent from the account that deployed the contract.

	gas_limit: The amount of gas provided for transaction execution, in wei. If not given, the gas limit is determined using web3.eth.estimateGas.

	gas_price: The gas price for the transaction, in wei. If not given, the gas price is set according to web3.eth.getPrice.

	amount: The amount of Ether to include with the transaction, in wei.

All integer values can also be given as strings that will be converted by Wei.

Note

To maintain compatibility with web3.eth.sendTransaction, you can use gas, gasPrice and value as aliases for gas_limit, gas_price, and amount.

Calls

Contract methods that do not alter the state are called via a ContractCall object. This object will call the contract method without broadcasting a transaction, and return the result.

>>> Token[0].balanceOf(accounts[0])
1000000000000000000000

If you wish to access the method via a transaction you can use ContractCall.transact.

>>> tx = Token[0].balanceOf.transact(accounts[0])

Transaction sent: 0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8
Token.balanceOf confirmed - block: 3 gas used: 23222 (18.85%)
<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>
>>> tx.return_value
1000000000000000000000

Contracts Outside of your Project

It is also possible to create a Contract object using only an ABI [https://solidity.readthedocs.io/en/latest/abi-spec.html#json]. In this way you can interact with already deployed contracts that are not a part of your core project.

To create a Contract from an ABI:

>>> from brownie import Contract
>>> Contract('0x79447c97b6543F6eFBC91613C655977806CB18b0', "Token", abi)
<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>

Inspecting and Debugging Transactions

Each time your perform a transaction you are returned a TransactionReceipt. This object contains all relevant information about the transaction, as well as various methods to aid in debugging.

>>> tx = Token[0].transfer(accounts[1], 1e18, {'from': accounts[0]})

Transaction sent: 0xa7616a96ef571f1791586f570017b37f4db9decb1a5f7888299a035653e8b44b
Token.transfer confirmed - block: 2 gas used: 51019 (33.78%)

>>> tx
<Transaction object '0xa7616a96ef571f1791586f570017b37f4db9decb1a5f7888299a035653e8b44b'>

To view human-readable information on a transaction, call the TransactionReceipt.info method.

>>> tx.info()

Transaction was Mined

Tx Hash: 0xa7616a96ef571f1791586f570017b37f4db9decb1a5f7888299a035653e8b44b
From: 0x4FE357AdBdB4C6C37164C54640851D6bff9296C8
To: 0xDd18d6475A7C71Ee33CEBE730a905DbBd89945a1
Value: 0
Function: Token.transfer
Block: 2
Gas Used: 51019 / 151019 (33.8%)

Events In This Transaction

Transfer
 from: 0x4fe357adbdb4c6c37164c54640851d6bff9296c8
 to: 0xfae9bc8a468ee0d8c84ec00c8345377710e0f0bb
 value: 1000000000000000000

Event Data

Data about events is available as TransactionReceipt.events. It is stored in an EventDict object; a hybrid container with both dict-like and list-like properties.

Note

Event data is still available when a transaction reverts.

>>> tx.events
{
 'CountryModified': [
 {
 'country': 1,
 'limits': (0,0,0,0,0,0,0,0),
 'minrating': 1,
 'permitted': True
 },
 {
 'country': 2,
 'limits': (0,0,0,0,0,0,0,0),
 'minrating': 1,
 'permitted': True
 }
],
 'MultiSigCallApproved': [
 {
 'callHash': "0x0013ae2e37373648c5161d81ca78d84e599f6207ad689693d6e5938c3ae4031d",
 'callSignature': "0xa513efa4",
 'caller': "0xF9c1fd2f0452FA1c60B15f29cA3250DfcB1081b9",
 'id': "0x8be1198d7f1848ebeddb3f807146ce7d26e63d3b6715f27697428ddb52db9b63"
 }
]
}

Use it as a dictionary for looking at specific events when the sequence they are fired in does not matter:

>>> len(tx.events)
3
>>> len(tx.events['CountryModified'])
2
>>> 'MultiSigCallApproved' in tx.events
True
>>> tx.events['MultiSigCallApproved']
{
 'callHash': "0x0013ae2e37373648c5161d81ca78d84e599f6207ad689693d6e5938c3ae4031d",
 'callSignature': "0xa513efa4",
 'caller': "0xF9c1fd2f0452FA1c60B15f29cA3250DfcB1081b9",
 'id': "0x8be1198d7f1848ebeddb3f807146ce7d26e63d3b6715f27697428ddb52db9b63"
}

Or as a list when the sequence is important, or more than one event of the same type was fired:

>>> tx.events[1].name
'CountryModified'
>>> tx.events[1]
{
 'country': 1,
 'limits': (0,0,0,0,0,0,0,0),
 'minrating': 1,
 'permitted': True
}

Internal Transactions and Deployments

TransactionReceipt.internal_transfers provides a list of internal ether transfers that occurred during the transaction.

>>> tx.internal_transfers
[
 {
 "from": "0x79447c97b6543F6eFBC91613C655977806CB18b0",
 "to": "0x21b42413bA931038f35e7A5224FaDb065d297Ba3",
 "value": 100
 }
]

TransactionReceipt.new_contracts provides a list of addresses for any new contracts that were created during a transaction. This is useful when you are using a factory pattern.

>>> deployer
<Deployer Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

>>> tx = deployer.deployNewContract()
Transaction sent: 0x6c3183e41670101c4ab5d732bfe385844815f67ae26d251c3bd175a28604da92
 Gas price: 0.0 gwei Gas limit: 79781
 Deployer.deployNewContract confirmed - Block: 4 Gas used: 79489 (99.63%)

>>> tx.new_contracts
["0x1262567B3e2e03f918875370636dE250f01C528c"]

To generate Contract objects from this list, use ContractContainer.at:

>>> tx.new_contracts
["0x1262567B3e2e03f918875370636dE250f01C528c"]
>>> Token.at(tx.new_contracts[0])
<Token Contract object '0x1262567B3e2e03f918875370636dE250f01C528c'>

Debugging Failed Transactions

Note

Debugging functionality relies on the debug_traceTransaction [https://github.com/ethereum/go-ethereum/wiki/Management-APIs#user-content-debug_tracetransaction] RPC method. If you are using Infura this endpoint is unavailable. Attempts to access this functionality will raise an RPCRequestError.

When a transaction reverts in the console you are still returned a TransactionReceipt, but it will show as reverted. If an error string is given, it will be displayed in brackets and highlighted in red.

>>> tx = Token[0].transfer(accounts[1], 1e18, {'from': accounts[3]})

Transaction sent: 0x5ff198f3a52250856f24792889b5251c120a9ecfb8d224549cb97c465c04262a
Token.transfer confirmed (Insufficient Balance) - block: 2 gas used: 23858 (19.26%)
<Transaction object '0x5ff198f3a52250856f24792889b5251c120a9ecfb8d224549cb97c465c04262a'>

The error string is also available as TransactionReceipt.revert_msg.

>>> tx.revert_msg
'Insufficient Balance'

You can also call TransactionReceipt.traceback to view a python-like traceback for the failing transaction. It shows source highlights at each jump leading up to the revert.

>>> tx.traceback()
Traceback for '0xd31c1c8db46a5bf2d3be822778c767e1b12e0257152fcc14dcf7e4a942793cb4':
Trace step 169, program counter 3659:
 File "contracts/SecurityToken.sol", line 156, in SecurityToken.transfer:
 _transfer(msg.sender, [msg.sender, _to], _value);
Trace step 5070, program counter 5666:
 File "contracts/SecurityToken.sol", lines 230-234, in SecurityToken._transfer:
 _addr = _checkTransfer(
 _authID,
 _id,
 _addr
);
Trace step 5197, program counter 9719:
 File "contracts/SecurityToken.sol", line 136, in SecurityToken._checkTransfer:
 require(balances[_addr[SENDER]] >= _value, "Insufficient Balance");

Inspecting the Trace

The Trace Object

The best way to understand exactly happened in a transaction is to generate and examine a transaction trace [https://github.com/ethereum/go-ethereum/wiki/Tracing:-Introduction#user-content-basic-traces]. This is available as a list of dictionaries at TransactionReceipt.trace, with several fields added to make it easier to understand.

Each step in the trace includes the following data:

{
 'address': "", // address of the contract containing this opcode
 'contractName': "", // contract name
 'depth': 0, // the number of external jumps away the initially called contract (starts at 0)
 'error': "", // occurred error
 'fn': "", // function name
 'gas': 0, // remaining gas
 'gasCost': 0, // cost to execute this opcode
 'jumpDepth': 1, // number of internal jumps within the active contract (starts at 1)
 'memory': [], // execution memory
 'op': "", // opcode
 'pc': 0, // program counter
 'source': {
 'filename': "path/to/file.sol", // path to contract source
 'offset': [0, 0] // start:stop offset associated with this opcode
 },
 'stack': [], // execution stack
 'storage': {} // contract storage
}

Call Traces

When dealing with complex transactions the trace can be may thousands of steps long - it can be challenging to know where to begin when examining it. Brownie provides the TransactionReceipt.call_trace method to view a complete map of every jump that occured in the transaction, along with associated trace indexes:

>>> tx.call_trace()
Call trace for '0xd31c1c8db46a5bf2d3be822778c767e1b12e0257152fcc14dcf7e4a942793cb4':
SecurityToken.transfer 0:5198 (0xea53cB8c11f96243CE3A29C55dd9B7D761b2c0BA)
└─SecurityToken._transfer 170:5198
 ├─IssuingEntity.transferTokens 608:4991 (0x40b49Ad1B8D6A8Df6cEdB56081D51b69e6569e06)
 │ ├─IssuingEntity.checkTransfer 834:4052
 │ │ ├─IssuingEntity._getID 959:1494
 │ │ │ └─KYCRegistrar.getID 1186:1331 (0xa79269260195879dBA8CEFF2767B7F2B5F2a54D8)
 │ │ ├─IssuingEntity._getID 1501:1635
 │ │ ├─IssuingEntity._getID 1642:2177
 │ │ │ └─KYCRegistrar.getID 1869:2014 (0xa79269260195879dBA8CEFF2767B7F2B5F2a54D8)
 │ │ ├─IssuingEntity._getInvestors 2305:3540
 │ │ │ └─KYCRegistrar.getInvestors 2520:3483 (0xa79269260195879dBA8CEFF2767B7F2B5F2a54D8)
 │ │ │ ├─KYCBase.isPermitted 2874:3003
 │ │ │ │ └─KYCRegistrar.isPermittedID 2925:2997
 │ │ │ └─KYCBase.isPermitted 3014:3143
 │ │ │ └─KYCRegistrar.isPermittedID 3065:3137
 │ │ └─IssuingEntity._checkTransfer 3603:4037
 │ ├─IssuingEntity._setRating 4098:4162
 │ ├─IssuingEntity._setRating 4204:4268
 │ ├─SafeMath32.add 4307:4330
 │ └─IssuingEntity._incrementCount 4365:4770
 │ ├─SafeMath32.add 4400:4423
 │ ├─SafeMath32.add 4481:4504
 │ ├─SafeMath32.add 4599:4622
 │ └─SafeMath32.add 4692:4715
 └─SecurityToken._checkTransfer 5071:5198

Each line shows the following information:

ContractName.functionName start:stop

Where start and stop are the indexes of TransactionReceipt.trace where the function was entered and exited. If an address is also shown, it means the function was entered via an external jump. Functions that terminated with REVERT or INVALID opcodes are highlighted in red.

TransactionReceipt.call_trace provides an initial high level overview of the transaction execution path, which helps you to examine the individual trace steps in a more targetted manner.

Accessing Transaction History

The TxHistory container, available as history, holds all the transactions that have been broadcasted. You can use it to access TransactionReceipt objects if you did not assign them a unique name when making the call.

>>> history
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>, <Transaction object '0xa7616a96ef571f1791586f570017b37f4db9decb1a5f7888299a035653e8b44b'>]

Unconfirmed Transactions

After broadcasting a transaction, Brownie will pause and wait for it to confirm. If you are using the console you can press Ctrl-C stop waiting and immediately receive the TransactionReceipt object. It will be marked as pending, and many attributes and methods will not yet be available. A notification will be displayed when the transaction confirms.

If you send another transaction from the same account before the previous one has confirmed, it is still broadcast with the next sequential nonce.

The Local Test Environment

Brownie is designed to use ganache-cli [https://github.com/trufflesuite/ganache-cli] as a local development environment. Functionality such as snapshotting and time travel is accessible via the Rpc object, available as rpc:

>>> rpc
<brownie.network.rpc.Rpc object at 0x7f720f65fd68>

Mining

Ganache mines a new block each time you broadcast a transaction. You can mine empty blocks with the rpc.mine method.

>>> web3.eth.blockNumber
0
>>> rpc.mine(50)
Block height at 50
>>> web3.eth.blockNumber
50

Time

You can call rpc.time to view the current epoch time. To fast forward, call rpc.sleep.

>>> rpc.time()
1557151189
>>> rpc.sleep(100)
>>> rpc.time()
1557151289

Snapshots

Use rpc.snapshot to take a snapshot of the current state of the blockchain:

>>> rpc.snapshot()
Snapshot taken at block height 4
>>> accounts[0].balance()
100000000000000000000
>>> accounts[0].transfer(accounts[1], "10 ether")

Transaction sent: 0xd5d3b40eb298dfc48721807935eda48d03916a3f48b51f20bcded372113e1dca
Transaction confirmed - block: 5 gas used: 21000 (100.00%)
<Transaction object '0xd5d3b40eb298dfc48721807935eda48d03916a3f48b51f20bcded372113e1dca'>

You can then return to this state later using rpc.revert:

>>> accounts[0].balance()
89999580000000000000
>>> rpc.revert()
Block height reverted to 4
>>> accounts[0].balance()
100000000000000000000

Reverting does not consume the snapshot; you can return to the same snapshot as many times as needed. However, if you take a new snapshot the previous one is no longer accessible.

To return to the genesis state, use rpc.reset.

>>> web3.eth.blockNumber
6
>>> rpc.reset()
>>> web3.eth.blockNumber
0

Data Types

Brownie uses custom data types to simplify working with common represented values.

Wei

The Wei class is used when a value is meant to represent an amount of Ether. It is a subclass of int [https://docs.python.org/3.8/library/functions.html#int] capable of converting strings, scientific notation and hex strings into wei denominated integers:

>>> Wei("1 ether")
1000000000000000000
>>> Wei("12.49 gwei")
12490000000
>>> Wei("0.029 shannon")
29000000
>>> Wei(8.38e32)
838000000000000000000000000000000

It also converts other values to Wei before performing comparisons, addition or subtraction:

>>> Wei(1e18) == "1 ether"
True
>>> Wei("1 ether") < "2 ether"
True
>>> Wei("1 ether") - "0.75 ether"
250000000000000000

Whenever a Brownie method takes an input referring to an amount of ether, the given value is converted to Wei. Balances and uint/int values returned in contract calls and events are given in Wei.

>>> accounts[0].balance()
100000000000000000000
>>> type(accounts[0].balance())
<class 'brownie.convert.Wei'>

Fixed

The Fixed class is used to handle Vyper decimal values [https://vyper.readthedocs.io/en/latest/types.html#decimals]. It is a subclass of decimal.Decimal [https://docs.python.org/3.8/library/decimal.html#decimal.Decimal] that allows comparisons, addition and subtraction against strings, integers and Wei.

>>> Fixed(1)
Fixed('1')
>>> Fixed("3.1337")
Fixed('3.1337')
>>> Fixed("12.49 gwei")
Fixed('12490000000')
>>> Fixed("-1.23") == "-1.2300"
True

Attempting to assign, compare or perform arithmetic against a float raises a TypeError.

>>> Fixed(3.1337)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Cannot convert float to decimal - use a string instead

>>> Fixed("-1.23") == -1.2300
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Cannot compare to floating point - use a string instead

Writing Unit Tests

Brownie utilizes the pytest framework for unit testing. Pytest is a mature, feature-rich test framework. It lets you write small tests with minimal code, scales well for large projects, and is highly extendable.

To run your tests:

$ brownie test

This documentation provides a quick overview of basic pytest usage, with an emphasis on features that are relevent to Brownie. Many components of pytest are only explained partially - or not at all. If you wish to learn more about pytest you should review the official pytest documentation [https://docs.pytest.org/en/latest/].

Getting Started

Test File Structure

Pytest performs a test discovery [https://docs.pytest.org/en/latest/goodpractices.html#test-discovery] process to locate functions that should be included in your project’s test suite.

	Tests must be stored within the tests/ directory of your project, or a subdirectory thereof.

	Filenames must match test_*.py or *_test.py.

Within the test files, the following methods will be run as tests:

	Functions outside of a class prefixed with test.

	Class methods prefixed with test, where the class is prefixed with Test and does not include an __init__ method.

Writing your First Test

The following example is a very simple test using Brownie and pytest, verifying that an account balance has correctly changed after performing a transaction.

	1
2
3
4
5
6
7

	from brownie import accounts

def test_account_balance():
 balance = accounts[0].balance()
 accounts[0].transfer(accounts[1], "10 ether", gas_price=0)

 assert balance - "10 ether" == accounts[0].balance()

Fixtures

A fixture [http://docs.pytest.org/en/latest/fixture.html] is a function that is applied to one or more test functions, and is called prior to the execution of each test. Fixtures are used to setup the initial conditions required for a test.

Fixtures are declared using the @pytest.fixture decorator. To pass a fixture to a test, include the fixture name as an input argument for the test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import pytest

from brownie import Token, accounts

@pytest.fixture
def token():
 return accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)

def test_transfer(token):
 token.transfer(accounts[1], 100, {'from': accounts[0]})
 assert token.balanceOf(accounts[0]) == 900

In this example the token fixture is called prior to running test_transfer. The fixture returns a deployed Contract instance which is then used in the test.

Fixtures can also be included as dependencies of other fixtures:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	import pytest

from brownie import Token, accounts

@pytest.fixture
def token():
 return accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)

@pytest.fixture
def distribute_tokens(token):
 for i in range(1, 10):
 token.transfer(accounts[i], 100, {'from': accounts[0]})

Brownie Pytest Fixtures

Brownie provides fixtures that simplify interact with and testing your project. Most core Brownie functionality can be accessed via a fixture rather than an import statement. For example, here is the previous example using Brownie fixtures rather than imports:

	1
2
3
4
5
6
7
8
9

	import pytest

@pytest.fixture
def token(Token, accounts):
 return accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)

def test_transfer(token, accounts):
 token.transfer(accounts[1], 100, {'from': accounts[0]})
 assert token.balanceOf(accounts[0]) == 900

See the Pytest Fixtures Reference for information about all available fixtures.

Fixture Scope

The default behaviour for a fixture is to execute each time it is required for a test. By adding the scope parameter to the decorator, you can alter how frequently the fixture executes. Possible values for scope are: function, class, module, or session.

Expanding upon our example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import pytest

@pytest.fixture(scope="module")
def token(Token):
 return accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)

def test_approval(token, accounts):
 token.approve(accounts[1], 500, {'from': accounts[0]})
 assert token.allowance(accounts[0], accounts[1]) == 500

def test_transfer(token, accounts):
 token.transfer(accounts[1], 100, {'from': accounts[0]})
 assert token.balanceOf(accounts[0]) == 900

By applying a module scope to the the token fixture, the contract is only deployed once and the same Contract instance is used for both test_approval and test_transfer.

Fixture of higher-scopes (such as session or module) are always instantiated before lower-scoped fixtures (such as function). The relative order of fixtures of same scope follows the declared order in the test function and honours dependencies between fixtures. The only exception to this rule is isolation fixtures, which are expained below.

Isolation Fixtures

In many cases you will want isolate your tests from one another by resetting the local environment. Without isolation, it is possible that the outcome of a test will be dependent on actions performed in a previous test.

Brownie provides two fixtures that are used to handle isolation:

	module_isolation is a module scoped fixture. It resets the local chain before and after completion of the module, ensuring a clean environment for this module and that the results of it will not affect subsequent modules.

	fn_isolation is function scoped. It additionally takes a snapshot of the chain before running each test, and reverts to it when the test completes. This allows you to define a common state for each test, reducing repetitive transactions.

Isolation fixtures are always the first fixture within their scope to execute. You can be certain that any action performed within a fuction-scoped fixture will happend after the isolation snapshot.

To apply an isolation fixture to all tests in a module, require it in another fixture and include the autouse parameter:

	1
2
3
4
5

	import pytest

@pytest.fixture(scope="module", autouse=True)
def shared_setup(module_isolation):
 pass

You can also place this fixture in a conftest.py [https://docs.pytest.org/en/latest/fixture.html#conftest-py-sharing-fixture-functions] file to apply it across many modules.

Defining a Shared Initial State

A common pattern is to include one or more module-scoped setup fixtures that define the initial test conditions, and then use fn_isolation to revert to this base state at the start of each test. For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	import pytest

@pytest.fixture(scope="module", autouse=True)
def token(Token, accounts):
 t = accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)
 yield t

@pytest.fixture(autouse=True)
def isolation(fn_isolation):
 pass

def test_transfer(token, accounts):
 token.transfer(accounts[1], 100, {'from': accounts[0]})
 assert token.balanceOf(accounts[0]) == 900

def test_chain_reverted(token):
 assert token.balanceOf(accounts[0]) == 1000

The sequence of events in the above example is:

	The setup phase of module_isolation runs, resetting the local environment.

	The module-scoped token fixture runs, deploying a Token contract with a total supply of 1000 tokens.

	The setup phase of the function-scoped fn_isolation fixture runs. A snapshot of the blockchain is taken.

	test_transfer runs, transferring 100 tokens from accounts[0] to accounts[1]

	The teardown phase of fn_isolation runs. The blockchain is reverted to it’s state before test_transfer.

	The setup phase of the fn_isolation fixture runs again. Another snapshot is taken - identical to the previous one.

	test_chain_reverted runs. The assert statement passes because of the fn_isolation fixture.

	The teardown phase of fn_isolation runs. The blockchain is reverted to it’s state before test_chain_reverted.

	The teardown phase of module_isolation runs, resetting the local environment.

Handling Reverted Transactions

When running tests, transactions that revert raise a VirtualMachineError exception. To write assertions around this you can use brownie.reverts as a context manager. It functions very similarly to pytest.raises [https://docs.pytest.org/en/latest/reference.html#pytest.raises].

	1
2
3
4
5
6

	import brownie

def test_transfer_reverts(accounts, Token):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e23)
 with brownie.reverts():
 token.transfer(accounts[1], 1e24, {'from': accounts[0]})

You may optionally include a string as an argument. If given, the error string returned by the transaction must match it in order for the test to pass.

	1
2
3
4
5
6

	import brownie

def test_transfer_reverts(accounts, Token):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e23)
 with brownie.reverts("Insufficient Balance"):
 token.transfer(accounts[1], 1e24, {'from': accounts[0]})

Developer Revert Comments

Each revert string adds a minimum 20000 gas to your contract deployment cost, and increases the cost for a function to execute. Including a revert string for every require and revert statement is often impractical and sometimes simply not possible due to the block gas limit.

For this reason, Brownie allows you to include revert strings as source code comments that are not included in the bytecode but still accessible via TransactionReceipt.revert_msg. You write tests that target a specific require or revert statement without increasing gas costs.

Revert string comments must begin with // dev: in Solidity, or # dev: in Vyper. Priority is always given to compiled revert strings. Some examples:

	1
2
3
4
5
6

	function revertExamples(uint a) external {
 require(a != 2, "is two");
 require(a != 3); // dev: is three
 require(a != 4, "cannot be four"); // dev: is four
 require(a != 5); // is five
}

	Line 2 will use the given revert string "is two"

	Line 3 will substitute in the string supplied on the comments: "dev: is three"

	Line 4 will use the given string "cannot be four" and ignore the subsitution string.

	Line 5 will have no revert string. The comment did not begin with "dev:" and so is ignored.

If the above function is executed in the console:

>>> tx = test.revertExamples(3)
Transaction sent: 0xd31c1c8db46a5bf2d3be822778c767e1b12e0257152fcc14dcf7e4a942793cb4
test.revertExamples confirmed (dev: is three) - block: 2 gas used: 31337 (6.66%)
<Transaction object '0xd31c1c8db46a5bf2d3be822778c767e1b12e0257152fcc14dcf7e4a942793cb4'>

>>> tx.revert_msg
'dev: is three'

Parametrizing Tests

The @pytest.mark.parametrize decorator enables parametrization of arguments [http://docs.pytest.org/en/latest/parametrize.html] for a test function. Here is a typical example of a parametrized test function, checking that a certain input results in an expected output:

	1
2
3
4
5
6

	import pytest

@pytest.mark.parametrize('amount', [0, 100, 500])
def test_transferFrom_reverts(token, accounts, amount):
 token.approve(accounts[1], amount, {'from': accounts[0]})
 assert token.allowance(accounts[0], accounts[1]) == amount

In the example the @parametrize decorator defines three different values for amount. The test_transferFrom_reverts is executed three times using each of them in turn.

You can achieve a similar effect with the @given decorator to automatically generate parametrized tests from a defined range:

	1
2
3
4
5
6

	from brownie.test import given, strategy

@given(amount=strategy('uint', max_value=1000)
def test_transferFrom_reverts(token, accounts, amount):
 token.approve(accounts[1], amount, {'from': accounts[0]})
 assert token.allowance(accounts[0], accounts[1]) == amount

This technique is known as property-based testing. To learn more, read Property-Based Testing.

Running Tests

To run the complete test suite:

$ brownie test

Or to run a specific test:

$ brownie test tests/test_transfer.py

Test results are saved at build/tests.json. This file holds the results of each test, coverage analysis data, and hashes that are used to determine if any related files have changed since the tests last ran. If you abort test execution early via a KeyboardInterrupt, results are only be saved for modules that fully completed.

Only Running Updated Tests

After the test suite has been run once, you can use the --update flag to only repeat tests where changes have occured:

$ brownie test --update

A module must use the module_isolation or fn_isolation fixture in every test function in order to be skipped in this way.

The pytest console output will represent skipped tests with an s, but it will be colored green or red to indicate if the test passed when it last ran.

If coverage analysis is also active, tests that previously completed but were not analyzed will be re-run. The final coverage report will include results for skipped modules.

Brownie compares hashes of the following items to check if a test should be re-run:

	The bytecode for every contract deployed during execution of the test

	The AST of the test module

	The AST of all conftest.py modules that are accessible to the test module

Evaluating Coverage

To check your unit test coverage, add the --coverage flag:

$ brownie test --coverage

When the tests complete, a report will display:

Coverage analysis:

 contract: Token - 82.3%
 SafeMath.add - 66.7%
 SafeMath.sub - 100.0%
 Token.<fallback> - 0.0%
 Token.allowance - 100.0%
 Token.approve - 100.0%
 Token.balanceOf - 100.0%
 Token.decimals - 0.0%
 Token.name - 100.0%
 Token.symbol - 0.0%
 Token.totalSupply - 100.0%
 Token.transfer - 85.7%
 Token.transferFrom - 100.0%

Coverage report saved at reports/coverage.json

Brownie outputs a % score for each contract method that you can use to quickly gauge your overall coverage level. A detailed coverage report is also saved in the project’s reports folder, that can be viewed via the Brownie GUI. See Viewing Reports for more information.

Using xdist for Distributed Testing

Brownie is compatible with the pytest-xdist [https://github.com/pytest-dev/pytest-xdist] plugin, allowing you to parallelize test execution. In large test suites this can greatly reduce the total runtime.

You may wish to read an overview of how xdist works [https://github.com/pytest-dev/pytest-xdist/blob/master/OVERVIEW.md] if you are unfamiliar with the plugin.

To run your tests in parralel, include the -n flag:

$ brownie test -n auto

Tests are distributed to workers on a per-module basis. An isolation fixture must be applied to every test being executed, or xdist will fail after collection. This is because without proper isolation it is impossible to ensure consistent behaviour between test runs.

Pytest Fixtures Reference

Brownie provides fixtures to allow you to interact with your project during tests. To use a fixture, add an argument with the same name to the inputs of your test function.

Session Fixtures

These fixtures provide quick access to Brownie objects that are frequently used during testing. If you are unfamiliar with these objects, you may wish to read the documentation liested under “Core Functionality” in the table of contents.

	
accounts

	Yields an Accounts container for the active project, used to interact with your local accounts.

	1
2

	def test_account_balance(accounts):
 assert accounts[0].balance() == "100 ether"

	
a

	Short form of the accounts fixture.

	1
2

	def test_account_balance(a):
 assert a[0].balance() == "100 ether"

	
history

	Yields a TxHistory container for the active project, used to access transaction data.

	1
2
3

	def test_account_balance(accounts, history):
 accounts[0].transfer(accounts[1], "10 ether")
 assert len(history) == 1

	
rpc

	Yields an Rpc object, used for interacting with the local test chain.

	1
2
3
4
5
6
7

	def test_account_balance(accounts, rpc):
 balance = accounts[1].balance()
 accounts[0].transfer(accounts[1], "10 ether")
 assert accounts[1].balance() == balance + "10 ether"

 rpc.reset()
 assert accounts[1].balance() == balance

	
state_machine

	Yields the state_machine method, used for running a stateful test.

	1
2
3
4

	def test_stateful(Token, accounts, state_machine):
 token = Token.deploy("Test Token", "TST", 18, 1e23, {'from': accounts[0]})

 state_machine(StateMachine, accounts, token)

	
web3

	Yields a Web3 object.

	1
2
3
4

	def test_account_balance(accounts, web3):
 height = web3.eth.blockNumber
 accounts[0].transfer(accounts[1], "10 ether")
 assert web3.eth.blockNumber == height + 1

Contract Fixtures

Brownie creates dynamically named fixtures to access each ContractContainer object within a project. Fixtures are generated for all deployable contracts and libraries.

For example - if your project contains a contract named Token, there will be a Token fixture available.

	1
2
3

	def test_token_deploys(Token, accounts):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e24)
 assert token.name() == "Test Token"

Isolation Fixtures

Isolation fixtures are used ensure a clean test environment when running tests, and to prevent the results of a test from affecting subsequent tests. See Isolation Fixtures for information on how to use these fixtures.

	
module_isolation

	Resets the local chain before running and after completing the test module.

	
fn_isolation

	Takes a snapshot of the chain before running a test and reverts to it after the test completes.

Coverage Fixtures

Coverage fixtures alter the behaviour of tests when coverage evaluation is active. They are useful for tests with many repetitive functions, to avoid the slowdown caused by debug_traceTransaction queries.

	
no_call_coverage

	Coverage evaluation will not be performed on called contact methods during this test.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	import pytest

@pytest.fixture(scope="module", autouse=True)
def token(Token, accounts):
 t = accounts[0].deploy(Token, "Test Token", "TST", 18, 1000)
 t.transfer(accounts[1], 100, {'from': accounts[0]})
 yield t

def test_normal(token):
 # this call is handled as a transaction, coverage is evaluated
 assert token.balanceOf(accounts[0]) == 900

def test_no_call_cov(Token, no_call_coverage):
 # this call happens normally, no coverage evaluation
 assert token.balanceOf(accounts[1]) == 100

	
skip_coverage

	Skips a test if coverage evaluation is active.

	1
2

	def test_heavy_lifting(skip_coverage):
 pass

Property-Based Testing

Brownie utilizes the hypothesis framework to allow for property-based testing.

Much of the content in this section is based on the official hypothesis.works [https://hypothesis.works/] website. To learn more about property-based testing, you may wish to read this series of introductory articles [https://hypothesis.works/articles/intro/] or view the official Hypothesis documentation [https://hypothesis.readthedocs.io/en/latest/].

What is Property-Based Testing?

Property-based testing is a powerful tool for locating edge cases and discovering faulty assumptions within your code.

The core concept behind property-based testing is that rather than writing a test for a single scenario, you write tests that describe a range of scenarios and then let your computer explore the possibilities for you rather than having to hand-write every one yourself.

The basic process consists of:

	Choose a function within your smart contract that you wish to test.

	Specify a range of inputs for this function that should always yield the same result.

	Call the function with random data from your specification.

	Make an assertion about the result.

Using this technique, each test is run many times with different arbitrary data. If an example is found where the assertion fails, an attempt is made to find the simplest case possible that still causes the problem. This example is then stored in a database [https://hypothesis.readthedocs.io/en/latest/database.html] and repeated in each subsequent tests to ensure that once the issue is fixed, it stays fixed.

Writing Tests

To begin writing property-based tests, import the following two methods:

from brownie.test import given, strategy

	given is a decorator that converts a test function that accepts arguments into a randomized test. This is a thin wrapper around hypothesis.given [https://hypothesis.readthedocs.io/en/latest/details.html#hypothesis.given], the API is identical.

	strategy is a method for creating test strategies based on ABI types.

A test using Hypothesis consists of two parts: A function that looks like a normal pytest test with some additional arguments, and a @given decorator that specifies how to those arguments are provided.

Here is a basic example, testing the transfer function of an ERC20 token contract.

from brownie import accounts
from brownie.test import given, strategy

@given(value=strategy('uint256', max_value=10000))
def test_transfer_amount(token, value):
 balance = token.balanceOf(accounts[0])
 token.transfer(accounts[1], value, {'from': accounts[0]})

 assert token.balanceOf(accounts[0]) == balance - value

When this test runs:

	The setup phase of all pytest fixtures are executed in their regular order.

	A snapshot of the current chain state is taken.

	strategy generates a random integer value and assigns it to the amount keyword argument.

	The test is executed.

	The chain is reverted to the snapshot taken in step 2.

	Steps 3-5 are repeated 50 times, or until the test fails.

	The teardown phase of all pytest fixtures are executed in their normal order.

It is possible to supply multiple strategies via @given. In the following example, we add a to argument using an address strategy.

from brownie import accounts
from brownie.test import given, strategy

@given(
 to=strategy('address', exclude=accounts[0]),
 value=strategy('uint256', max_value=10000),
)
def test_transfer_amount(token, to, value):
 balance = token.balanceOf(accounts[0])
 token.transfer(to, value, {'from': accounts[0]})

 assert token.balanceOf(accounts[0]) == balance - value
 assert token.balanceOf(to) == value

Strategies

The key object in every test is a strategy. A strategy is a recipe for describing the sort of data you want to generate. Brownie provides a strategy method that generates strategies for any given ABI type.

>>> from brownie.test import strategy
>>> strategy('uint8')
integers(min_value=0, max_value=255)

Each strategy object contains an example method that you can call in the console to explore the types of data that will be generated.

>>> st = strategy('uint8')
>>> st.example()
243
>>> st.example()
77

strategy accepts different keyword arguments depending on the ABI type.

Type Strategies

The following strategies correspond to types within Solidity [https://solidity.readthedocs.io/en/latest/types.html] and Vyper [https://vyper.readthedocs.io/en/latest/types.html].

Address

Base strategy: hypothesis.strategies.sampled_from [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.sampled_from]

address strategies yield Account objects from the Accounts container.

Optional keyword arguments:

	excludes: An object, iterable or callable used to filter strategy results.

>>> strategy('address')
sampled_from(accounts)

>>> strategy('address').example()
<Account '0x33A4622B82D4c04a53e170c638B944ce27cffce3'>

Bool

Base strategy: hypothesis.strategies.booleans [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.booleans]

bool strategies yield True or False.

This strategy does not accept any keyword arguments.

>>> strategy('bool')
booleans()

>>> strategy('bool').example()
True

Bytes

Base strategy: hypothesis.strategies.binary [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.binary]

bytes strategies yield byte strings.

All bytes strategies accept the following keyword arguments:

	excludes: An object, iterable or callable used to filter strategy results.

For fixed length values [https://solidity.readthedocs.io/en/latest/types.html#fixed-size-byte-arrays] (bytes1`...``bytes32) the strategy always generates bytes of exactly the given length. For dynamic bytes arrays [https://solidity.readthedocs.io/en/latest/types.html#bytes-and-strings-as-arrays] (bytes), the minimum and maximum length may be specified using keyord arguments:

	min_size: Minimum length for each returned value. The default value is 1.

	max_size: Maximum length for each returned value. The default value is 64.

>>> strategy('bytes32')
binary(min_size=32, max_size=32)
>>> strategy('bytes', max_size=16)
binary(min_size=1, max_size=16)

>>> strategy('bytes8').example()
b'\xb8\xd6\xaa\xcbR\x0f\xb88'

Decimal

Base strategy: hypothesis.strategies.decimals [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.decimals]

decimal strategies yield decimal.Decimal [https://docs.python.org/3.8/library/decimal.html#decimal.Decimal] instances.

Optional keyword arguments:

	min_value: The maximum value to return. The default is -2**127 (the lower bound of Vyper’s decimal type). The given value is converted to Fixed.

	max_value: The maximum value to return. The default is 2**127-1 (the upper bound of Vyper’s decimal type). The given value is converted to Fixed.

	places: The number of decimal points to include. The default value is 10.

	excludes: An object, iterable or callable used to filter strategy results.

>>> strategy('decimal')
decimals(min_value=-170141183460469231731687303715884105728, max_value=170141183460469231731687303715884105727, places=10)

>>> strategy('decimal').example()
Decimal('44.8234019327')

Integer

Base strategy: hypothesis.strategies.integers [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.integers]

int and uint strategies yield integer values.

Optional keyword arguments:

	min_value: The maximum value to return. The default is the lower bound for the given type. The given value is converted to Wei.

	max_value: The maximum value to return. The default is the upper bound for the given type. The given value is converted to Wei.

	excludes: An object, iterable or callable used to filter strategy results.

>>> strategy('uint32')
integers(min_value=0, max_value=4294967295)
>>> strategy('int8')
integers(min_value=-128, max_value=127)
>>> strategy('uint', min_value="1 ether", max_value="25 ether")
integers(min_value=1000000000000000000, max_value=25000000000000000000)

>>> strategy('uint').example()
156806085

String

Base strategy: hypothesis.strategies.text [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.text]

string strategies yield unicode text strings.

Optional keyword arguments:

	min_size: Minimum length for each returned value. The default value is 0.

	max_size: Maximum length for each returned value. The default value is 64.

	excludes: An object, iterable or callable used to filter strategy results.

>>> strategy('string')
text(max_size=64)
>>> strategy('string', min_size=12, max_size=23)
text(min_size=12, max_size=23)

>>> strategy('string').example()
'\x02\x14\x01\U0009b3c5'

Sequence Strategies

Along with the core strategies, Brownie also offers strategies for generating array or tuple sequences.

Array

Base strategy: hypothesis.strategies.lists [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.lists]

Array strategies yield lists of strategies for the base array type. It is possible to generate arrays of both fixed and dynamic length, as well as multidimensional arrays.

Optional keyword arguments:

	min_length: The minimum number of items inside a dynamic array. The default value is 1.

	max_length: The maximum number of items inside a dynamic array. The default value is 8.

	unique: If True, each item in the list will be unique.

For multidimensional dynamic arrays, min_length and max_length may be given as a list where the length is equal to the number of dynamic dimensions.

You can also include keyword arguments for the base type of the array. They will be applied to every item within the generated list.

>>> strategy('uint32[]')
lists(elements=integers(min_value=0, max_value=4294967295), min_length=1, max_length=8)
>>> strategy('uint[3]', max_value=42)
lists(elements=integers(min_value=0, max_value=42), min_length=3, max_length=3)

>>> strategy('uint[3]', max_value=42).example()
[16, 23, 14]

Tuple

Base strategy: hypothesis.strategies.tuples [https://hypothesis.readthedocs.io/en/latest/data.html#hypothesis.strategies.tuples]

Tuple strategies yield tuples of mixed strategies according to the given type string.

This strategy does not accept any keyword arguments.

>>> strategy('(int16,bool)')
tuples(integers(min_value=-32768, max_value=32767), booleans())
>>> strategy('(uint8,(bool,bytes4))')
tuples(integers(min_value=0, max_value=255), tuples(booleans(), binary(min_size=4, max_size=4)))

>>> strategy('(uint16,bool)').example()
(47628, False)

Other Strategies

All of the strategies that Brownie provides are based on core strategies from the hypothesis.strategies library. If you require something more specific or complex than Brownie offers, you can also directly use hypothesis strategies.

See the Hypothesis strategy documentation [https://hypothesis.readthedocs.io/en/latest/data.html#] for more information on available strategies and how they can be customized.

Settings

Depending on the scope and complexity of your tests, it may be necessary to modify the default settings for how property-based tests are run.

The mechanism for doing this is the hypothesis.settings [https://hypothesis.readthedocs.io/en/latest/settings.html#hypothesis.settings] object. You can set up a @given based test to use this using a settings decorator:

from brownie.test import given
from hypothesis settings

@given(strategy('uint256'))
@settings(max_examples=500)
def test_this_thoroughly(x):
 pass

You can also affect the settings permanently by adding a hypothesis field to your project’s brownie-config.yaml file:

hypothesis:
 max_examples: 500

Available Settings

See the Hypothesis settings documentation [https://hypothesis.readthedocs.io/en/latest/settings.html#available-settings] for a complete list of available settings. This section only lists settings where the default value has been changed.

	
deadline

	The number of milliseconds that each individual example within a test is allowed to run. Tests that take longer than this time will be considered to have failed.

Because Brownie test times can vary widely, this property has been disabled by default.

default-value: None

	
max_examples

	The maximum number of times a test will be run before considering it to have passed.

For tests involving many complex transactions you may wish to reduce this value.

default-value: 50

	
stateful_step_count

	The maximum number of rules to execute in a stateful program before ending the run and considering it to have passed.

For more complex state machines you may wish to increase this value - however you should keep in mind that this can result in siginificantly longer execution times.

default-value: 10

Stateful Testing

Stateful testing is a more advanced method of propery-based testing used to test complex systems. In a stateful test you define a number of actions that can be combined together in different ways, and Hypothesis attempts to find a sequence of those actions that results in a failure. This is useful for testing complex contracts or contract-to-contract interactions where there are many possible states.

Brownie utilizes the hypothesis framework to allow for stateful testing.

Much of the content in this section is based on the official hypothesis.works [https://hypothesis.works/] website. To learn more about stateful testing, you may wish to read the following articles:

	Rule Based Stateful Testing [https://hypothesis.works/articles/rule-based-stateful-testing/] by David R. MacIver

	Solving the Water Jug Problem from Die Hard 3 with TLA+ and Hypothesis [https://hypothesis.works/articles/how-not-to-die-hard-with-hypothesis/] by Nicholas Chammas

	Hypothesis Documentation [https://hypothesis.readthedocs.io/en/latest/stateful.html] on stateful testing

Warning

This functionality is still under development and should be considered experimental. Use common sense when evaluating the results, and if you encounter any problems please open an issue [https://github.com/iamdefinitelyahuman/brownie/issues] on Github.

Rule-based State Machines

A state machine is a class used within stateful testing. It defines the initial test state, a number of actions outlining the structure that the test will execute in, and invariants that should not be violated during execution.

Note

Unlike regular Hypothesis state machines, Brownie state machines should not subclass RuleBasedStateMachine [https://hypothesis.readthedocs.io/en/latest/stateful.html#hypothesis.stateful.RuleBasedStateMachine].

Rules

At the core of every state machine are one or more rules. Rules are class methods that are very similar to @given based tests; they receive values drawn from strategies and pass them to a user defined test function. The key difference is that where @given based tests run independently, rules can be chained together - a single stateful test run may involve multiple rule invocations, which may interact in various ways.

Any state machine method named rule or begining with rule_ is treated as a rule.

class StateMachine:

 def rule_one(self):
 # performs a test action

 def rule_two(self):
 # performs another, different test action

Initializers

There is also a special type of rule known as an initializer. These are rules that are guaranteed to be executed at most one time at the beginning of a run (i.e. before any normal rule is called). They may be called in any order, or not at all, and the order will vary from run to run.

Any state machine method named initialize or beginning with initialize_ is treated as an initializer.

class StateMachine:

 def initialize(self):
 # this method may or may not be called prior to rule_two

 def rule(self):
 # once this method is called, initialize will not be called during the test run

Strategies

A state machine should contain one or more strategies, in order to provide data to it’s rules.

Strategies must be defined at the class level, typically before the first function. They can be given any name.

Similar to how fixtures work within pytest tests, state machine rules receive strategies by referencing them within their arguments. This is shown in the following example:

class StateMachine:

 st_uint = strategy('uint256')
 st_bytes32 = strategy('bytes32')

 def initialize(self, st_uint):
 # this method draws from the uint256 strategy

 def rule(self, st_uint, st_bytes32):
 # this method draws from both strategies

 def rule_two(self, value="st_uint", othervalue="st_uint"):
 # this method draws from the same strategy twice

Invariants

Along with rules, a state machine often defines invariants. These are properties that should remain unchanged, regardless of any actions performed by the rules. After each rule is executed, every invariant method is always called to ensure that the test has not failed.

Any state machine method named invariant or beginning with invariant_ is treated as an invariant. Invariants are meant for verifying correctness of state; they cannot receive strategies.

class StateMachine:

 def rule_one(self):
 pass

 def rule_two(self):
 pass

 def invariant(self):
 # assertions in this method should always pass regardless
 # of actions in both rule_one and rule_two

Setup and Teardown

A state machine may optionally include setup and teardown procedures. Similar to pytest fixtures, setup and teardown methods are available to execute logic on a per-test and per-run basis.

	
classmethod StateMachine.__init__(cls, *args)

	This method is called once, prior to the chain snapshot taken before the first test run. It is run as a class method - changes made to the state machine will persist through every run of the test.

__init__ is the only method that can be used to pass external data into the state machine. In the following example, we use it to pass the accounts fixture, and a deployed instance of a token contract:

class StateMachine:

 def __init__(cls, accounts, token):
 cls.accounts = accounts
 cls.token = token

def test_stateful(Token, accounts, state_machine):
 token = Token.deploy("Test Token", "TST", 18, 1e23, {'from': accounts[0]})

 # state_machine forwards all the arguments to StateMachine.__init__
 state_machine(StateMachine, accounts, token)

	
classmethod StateMachine.setup(self)

	This method is called at the beginning of each test run, immediately after chain is reverted to the snapshot. Changes applied during setup will only have an effect for the upcoming run.

	
classmethod StateMachine.teardown(self)

	This method is called at the end of each successful test run, prior to the chain revert. teardown is not called if the run fails.

	
classmethod StateMachine.teardown_final(cls)

	This method is called after the final test run has completed and the chain has been reverted. teardown_final is called regardless of whether the test passed or failed.

Test Execution Sequence

A Brownie stateful test executes in the following sequence:

	The setup phase of all pytest fixtures are executed in their regular order.

	If present, the StateMachine.__init__ method is called.

	A snapshot of the current chain state is taken.

	If present, the StateMachine.setup method is called.

	Zero or more StateMachine initialize methods are called, in no particular order.

	One or more StateMachine rule methods are called, in no particular order.

	After each initialize and rule, every StateMachine invariant method is called.

	If present, the StateMachine.teardown method is called.

	The chain is reverted to the snapshot taken in step 3.

	Steps 4-9 are repeated 50 times, or until the test fails.

	If present, the StateMachine.teardown_final method is called.

	The teardown phase of all pytest fixtures are executed in their normal order.

Writing Stateful Tests

To write a stateful test:

	Create a state machine class.

	Create a regular pytest-style test that includes the state_machine fixture.

	Within the test, call state_machine with the state machine as the first argument.

	
brownie.test.stateful.state_machine(state_machine_class, *args, settings=None)

	Executes a stateful test.

	state_machine_class: A state machine class to be used in the test. Be sure to pass the class itself, not an instance of the class.

	*args: Any arguments given here will be passed to the state machine’s __init__ method.

	settings: An optional dict [https://docs.python.org/3.8/library/stdtypes.html#dict] of Hypothesis settings that will replace the defaults for this test only.

This method is available as a pytest fixture state_machine.

Basic Example

As a basic example, we will create a state machine to test the following Vyper Depositer contract. This is very simple contract with two functions and a public mapping. Anyone can deposit ether for another account using the deposit_for method, or withdraw deposited ether using withdraw_from.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	deposited: public(map(address, uint256(wei)))

@public
@payable
def deposit_for(receiver: address) -> bool:
 self.deposited[receiver] += msg.value
 return True

@public
def withdraw_from(value: uint256(wei)) -> bool:
 assert self.deposited[msg.sender] >= value, "Insufficient balance"
 self.deposited[msg.sender] = value
 send(msg.sender, value)
 return True

If you looked closely you may have noticed a major issue in the contract code. If not, don’t worry! We’re going to find it using our test.

Here is a state machine and test function we can use to test the contract.

import brownie
from brownie.test import strategy

class StateMachine:

 value = strategy('uint256', max_value="1 ether")
 address = strategy('address')

 def __init__(cls, accounts, Depositer):
 # deploy the contract at the start of the test
 cls.accounts = accounts
 cls.contract = Depositer.deploy({'from': accounts[0]})

 def setup(self):
 # zero the deposit amounts at the start of each test run
 self.deposits = {i: 0 for i in self.accounts}

 def rule_deposit(self, address, value):
 # make a deposit and adjust the local record
 self.contract.deposit_for(address, {'from': self.accounts[0], 'value': value})
 self.deposits[address] += value

 def rule_withdraw(self, address, value):
 if self.deposits[address] >= value:
 # make a withdrawal and adjust the local record
 self.contract.withdraw_from(value, {'from': address})
 self.deposits[address] -= value
 else:
 # attempting to withdraw beyond your balance should revert
 with brownie.reverts("Insufficient balance"):
 self.contract.withdraw_from(value, {'from': address})

 def invariant(self):
 # compare the contract deposit amounts with the local record
 for address, amount in self.deposits.items():
 assert self.contract.deposited(address) == amount

def test_stateful(Depositer, accounts, state_machine):
 state_machine(StateMachine, accounts, Depositer)

When this test is executed, it will call rule_deposit and rule_withdraw using random data from the given stratgies until it encounters a state which violates one of the assertions. If this happens, it repeats the test in an attempt to find the shortest path and smallest data set possible that reproduces the error. Finally it saves the failing conditions to be used in future tests, and then delivers the following output:

 def invariant(self):
 for address, amount in self.deposits.items():
> assert self.contract.deposited(address) == amount
E AssertionError: assert 0 == 1

Falsifying example:
state = BrownieStateMachine()
state.rule_deposit(address=<Account '0x33A4622B82D4c04a53e170c638B944ce27cffce3'>, value=1)
state.rule_withdraw(address=<Account '0x33A4622B82D4c04a53e170c638B944ce27cffce3'>, value=0)
state.teardown()

From this we can see the sequence of calls leading up to the error, and that the failed assertion is that self.contract.deposited(address) is zero, when we expected it to be one. We can infer that the contract is incorrectly adjusting balances within the withdraw function. Looking at that function:

	 9
10
11
12
13
14

	@public
def withdraw_from(value: uint256(wei)) -> bool:
 assert self.deposited[msg.sender] >= value, "Insufficient balance"
 self.deposited[msg.sender] = value
 send(msg.sender, value)
 return True

On line 12, rather than subtracting value, the balance is being set to value. We found the bug!

More Examples

Here are some links to repositories that make use of stateful testing. If you have a project that you would like included here, feel free to edit this document [https://github.com/iamdefinitelyahuman/brownie/edit/master/docs/tests-hypothesis-stateful.rst] and open a pull request, or let us know about it on Gitter [https://gitter.im/eth-brownie/community].

	iamdefinitelyahuman/NFToken [https://github.com/iamdefinitelyahuman/nftoken/tree/master/tests/stateful]: A non-fungible implementation of the ERC20 standard.

Running Stateful Tests

By default, stateful tests are included when you run your test suite. There is no special action required to invoke them.

You can choose to exclude stateful tests, or to only run stateful tests, with the --stateful flag. This can be useful to split the test suite when setting up continuous integration [https://github.com/brownie-mix/travis-mix].

To only run stateful tests:

$ brownie test --stateful true

To skip stateful tests:

$ brownie test --stateful false

When a stateful test is active the console shows a spinner that rotates each time a run of the test has finished. If the color changes from yellow to red, it means the test has failed and hypothesis is now searching for the shortest path to the failure.

Coverage Evaluation

To check your unit test coverage:

$ brownie test --coverage

When the tests complete, a report will display:

Coverage analysis:

 contract: Token - 82.3%
 SafeMath.add - 66.7%
 SafeMath.sub - 100.0%
 Token.<fallback> - 0.0%
 Token.allowance - 100.0%
 Token.approve - 100.0%
 Token.balanceOf - 100.0%
 Token.decimals - 0.0%
 Token.name - 100.0%
 Token.symbol - 0.0%
 Token.totalSupply - 100.0%
 Token.transfer - 85.7%
 Token.transferFrom - 100.0%

Coverage report saved at reports/coverage.json

Brownie outputs a % score for each contract method that you can use to quickly gauge your overall coverage level. A detailed coverage report is also saved in the project’s reports folder, that can be viewed via the Brownie GUI.

Viewing Coverage Data

For an in-depth examination of your test coverage, first open the Brownie GUI:

brownie gui

Click on the drop-down list in the upper right that says “Select Report” and choose “coverage”. A new drop-down list will appear where you can select which type of coverage data to view (branches or statements).

Relevant code will be highlighted in different colors:

	Green code was executed during the tests

	Yellow branch code executed, but only evaluated truthfully

	Orange branch code executed, but only evaluated falsely

	Red code did not execute during the tests

[image: Viewing Coverage Data]

How Coverage Evaluation Works

Test coverage is calculated by generating a map of opcodes associated with each statement and branch of the source code, and then analyzing the stack trace of each transaction to see which opcodes executed. See “Evaluating Solidity Code Coverage via Opcode Tracing” [https://medium.com/coinmonks/brownie-evaluating-solidity-code-coverage-via-opcode-tracing-a7cf5a92d28c] for a more detailed explanation of how coverage evaluation works.

Improving Performance

During coverage analysis, all contract calls are executed as transactions. This gives a more accurate coverage picture by allowing analysis of methods that are typically non-state changing. A snapshot is taken before each of these calls-as-transactions, and the state is reverted immediately after to ensure that the outcome of the test is not affected. For tests that involve many calls this can result in significantly slower execution time.

Some things to keep in mind that can help to reduce your test runtime when evaluating coverage:

	Coverage is analyzed on a per-transaction basis, and the results are cached. If you repeat an identical transaction, Brownie will not analyze it the 2nd time. Keep this in mind when designing and sequencing setup fixtures.

	For tests that involve many calls to the same getter method, use no_call_coverage to significantly speed execution.

	Omit very complex tests altogether with skip_coverage.

	If possible, always run your tests in parralel with xdist.

You can use the --durations flag to view a profile of your slowest tests. You may find good candidates for optimization, or the use of the no_call_coverage and skip_coverage fixtures.

Security Analysis with MythX

Brownie is integrated with the MythX [https://mythx.io/] analysis API to allow automated security scans of your project.

MythX is a smart contract security service that scans your project for vulnerabilities using static analysis, dynamic analysis, and symbolic execution. It runs in three modes:

	Quick mode which is effective at finding bad coding patterns and low complexity-bugs (available to free users)

	Standard mode which takes longer to run, but can locate complex security issues (available to Dev users)

	Deep mode which takes even longer to run, but is able to find deep, hidden vulnerabilities (available to Pro users)

MythX offers both free and paid services. To learn more about how it works you may wish to read MythX Pro Security Analysis Explained [https://blog.mythx.io/features/mythx-full-mode-security-analysis-explained/#more-37] by Bernhard Mueller.

Authentication

Before you can submit your contracts for analysis you must sign up [https://dashboard.mythx.io/registration] for a MythX account. Next, login to your account and obtain a JWT token so you can authenticate to the API.

The preferred way to pass your JWT token is via the MYTHX_API_KEY environment variable. You can set it with the following command:

$ export MYTHX_API_KEY=YourToken

If this is not possible, you may also pass it via the --api-key commandline option:

$ brownie analyze --api-key=<string>

Scanning for Vulnerabilities

To quickly scan your project for vulnerabilities:

$ brownie analyze

This will send the compiled build artifacts to MythX for analysis. You will receive updates on the status of the scan; the entire process should take around three minutes.

To perform a standard scan:

$ brownie analyze --mode=standard

Note that a deep scan requires authentication and takes approximately half an hour to complete.

If you include the --async flag Brownie will submit the job, output the pending ID and exit. You can view the finished report later through the MythX dashboard.

Viewing Analysis Results

Once analysis is finished, data about any vulnerabilities is stored in the
reports/ directory within your project. The report can be viewed using the Brownie GUI, or by logging into the MythX dashboard [https://dashboard.mythx.io/].

To view your report in the GUI, first open the GUI:

brownie gui

Alternatively, the --gui flag can be passed to the analyze subcommand to open the Brownie GUI right away after the analysis results have been received.

brownie analyze --gui

Click on the drop-down list in the upper right that says “Select Report” and choose “security”. Then choose MythX in the new dropdown that appears.

If any vulnerabilities have been found, they will be highlighted based on their severity:

	Yellow Low severity (best practice violations)

	Orange Medium severity (potential vulnerability), needs to be fixed

	Red High severity (critical, immediate danger of exploitation)

You can expand the console by clicking the Console button in the top left (or pressing the C key). Hovering the mouse over a vulnerability will displayed a more detailed explanation from the SWC registry [https://swcregistry.io/].

[image: Security Report GUI]

Deployment Basics

Once your project is ready to be deployed to a persistent chain (such as the Etherem mainnet or a testnet), Brownie can be used to handle the deployments.

It is important to remember that blockchains are permanent and immutable. Once your project has been deployed there is no going back. For this reason, we highly recommend the following process when deploying to the mainnet:

	Create a deployment script

	Test the script on your local development environment

	Test the script again on one of the public test networks [https://medium.com/compound-finance/the-beginners-guide-to-using-an-ethereum-test-network-95bbbc85fc1d] and verify that it executed as intended

	Use the script to deploy your project to the mainnet

Once deployment is complete you may also create an ethPM package to simplify the process for other developers who wish to interact with your project.

Writing a Deployment Script

Deployment scripts function in the same way as any other Brownie script, but there are a couple of things to keep in mind when writing one for a non-local network:

	Unless you are using your own node you will have to unlock a local account prior to deploying. This is handled within the script by calling Accounts.load. If you have not yet added a local account to Brownie, read the documentation on local account management.

	Most networks require that you to pay gas to miners. If no values are specified Brownie will calculate the gas price and limit automatically, but in some cases you may wish to manually declare these values.

Here is an small example script that unlocks a local account and uses it to deploy a Token contract.

from brownie import Token, accounts

def main():
 acct = accounts.load('deployment_account')
 Token.deploy("My Real Token", "RLT", 18, 1e28, {'from': acct})

Running your Deployment Script

In order to execute your script on a non-local network, you must include the --network flag in the command line. For example, to connect to the ropsten network and run scripts/deploy.py:

$ brownie run deploy.py --network ropsten

Remember that transactions are not confirmed immediately on non-local networks. You will see a notification on the status of each transaction, however the script will take some time to complete.

See the documentation on using non-local networks for more information on how to define and connect to other networks.

Interacting with Deployed Contracts

Brownie saves information about contract deployments on non-local networks. Once a contract has been deployed, the generated Contract instance will still be available the next time you load Brownie.

The following actions will NOT remove locally stored deployment data:

	Disconnecting and reconnecting to the same network

	Closing and reloading a project

	Exiting and reloading Brownie

	Modifying a contract’s source code - Brownie still retains the source for the deployed version

The following actions WILL remove locally stored deployment data:

	Calling ContractContainer.remove will erase deployment information for the removed Contract instances.

	Removing or renaming a contract source file within your project will cause Brownie to delete all deployment information for the removed contract.

	Deleting the build/deployments/ directory will erase all information about deployed contracts.

To restore a deleted Contract instance, or generate one for a deployment that was handled outside of Brownie, use the ContractContainer.at method.

Using Non-Local Networks

In addition to using ganache-cli [https://github.com/trufflesuite/ganache-cli] as a local development environment, Brownie can connect to non-local networks (i.e. any testnet/mainnet node that supports JSON RPC).

Warning

Before you go any further, consider that connecting to non-local networks can potentially expose your private keys if you aren’t careful:

	When interacting with the mainnet, make sure you verify all of the details of any transactions before signing or sending. Brownie cannot protect you from sending ETH to the wrong address, sending too much, etc.

	Always protect your private keys. Don’t leave them lying around unencrypted!

Personal Node vs Hosted Node

In order to interact with a non-local network you must connect to a node. You can either run your own node, or connect to a hosted node.

Running your Own Node

Clients such as Geth [https://geth.ethereum.org/] or Parity [https://www.parity.io/ethereum/] can be used to run your own Ethereum node, that Brownie can then connect to. Having your node gives you complete control over which RPC endpoints are available and ensures you have a private and dedicated connection to the network. Unfortunately, keeping a node operating and synced can be a challenging task.

If you wish to learn more about running a node, ethereum.org provides a list of resources [https://ethereum.org/developers/#testnets-and-faucets] that you can use to get started.

Using a Hosted Node

Services such as Infura [https://infura.io] provide public access to Ethereum nodes. This is a much simpler option than running your own, but it is not without limitations:

	Some RPC endpoints may be unavailable. In particular, Infura does not provide access to the debug_traceTransaction [https://github.com/ethereum/go-ethereum/wiki/Management-APIs#user-content-debug_tracetransaction] method. For this reason, Brownie’s debugging tools will not work when connected via Infura.

	Hosted nodes do not provide access to accounts - this would be a major security hazard! You will have to manually unlock your own local account before you can make a transaction.

Using Infura

Before you can onnect to Infura you need to register for an account [https://infura.io/register]. After you have signed up, login and create a new project. You will be provided with a project ID, as well as API URLs that can be leveraged to access the network.

To connect to Infura using Brownie, store your project ID as an environment variable named WEB3_INFURA_PROJECT_ID. You can do so with the following command:

$ export WEB3_INFURA_PROJECT_ID=YourProjectID

Network Configuration

Defining Non-Local Networks

The connection settings for non-local networks must be defined in brownie-config.yaml.

First, for each network you want to configure, create a new section in the network.networks section as below:

network:
 networks:
 ropsten:
 host: http://ropsten.infura.io/v3/$WEB3_INFURA_PROJECT_ID

If using Infura, you can provide your project ID key as an environment variable or by modifying the hosts setting in the configuration file.

The environment variable is set to WEB3_INFURA_PROJECT_ID in the default configuration file. Use the following command to set the environment variable:

$ export WEB3_INFURA_PROJECT_ID=YourProjectID

Setting the Default Network

To modify the default network that Brownie connects to, update the network.default field as shown below:

network:
 default: ropsten

Launching and Connecting to Networks

Using the CLI

By default, Brownie will connect to whichever network is set as “default” in brownie-config.yaml. To connect to a different network, use the --network flag:

$ brownie --network ropsten

Using brownie.network

The brownie.network module conains methods that allow you to connect or disconnect from any network defined within the configuration file.

To connect to a network:

>>> network.connect('ropsten')
>>> network.is_connected()
True
>>> network.show_active()
'ropsten'

To disconnect:

>>> network.disconnect()
>>> network.is_connected()
False

Managing Local Accounts

When connecting to a remote network via a hosted node such as Infura [https://infura.io/], the Accounts container will be empty. Before you can perform any transactions you must add a local account to Brownie.

When we use the term local it implies that the account exists locally on your system, as opposed to being available directly in the node. Local accounts are stored in encrypted JSON files known as keystores. If you want to learn more about keystore files, you can read If you want to understand the contents of your json file you can read “What is an Ethereum keystore file?” [https://medium.com/@julien.maffre/what-is-an-ethereum-keystore-file-86c8c5917b97] by Julien Maffre.

Account Management

You can manage your locally available accounts via the brownie accounts commandline.

Generating a New Account

To generate a new account using the command line:

$ brownie accounts generate <id>

You will be asked to choose a password for the account. Brownie will then generate a random private key, and make the account available as <id>.

Importing from a Private Key

To add a new account via private key:

$ brownie accounts new <id>

You will be asked to input the private key, and to choose a password. The account will then be available as <id>.

Importing from a Keystore

You can import an existing JSON keystore into Brownie using the commandline:

$ brownie accounts import <id> <path>

Once imported the account is available as <id>.

Exporting a Keystore

To export an existing account as a JSON keystore file:

$ brownie accounts export <id> <path>

The exported account will be saved at <path>.

Unlocking Accounts

In order to access a local account from a script or console, you must first unlock it. This is done via the Accounts.load method:

Once the account is unlocked it will be available for use within the Accounts container.

The Ethereum Package Manager

The Ethereum Package Manager [https://www.ethpm.com/] (ethPM) is a decentralized package manager used to distribute EVM smart contracts and projects. It has similar goals to most package managers found in any given programming language:

	Easily import and build upon core ideas written by others.

	Distribute the ideas that you’ve written and/or deployed, making them easily consumable for tooling and the community at large.

At its core, an ethPM package is a JSON object containing the ABI, source code, bytecode, deployment data and any other information that combines together to compose the smart contract idea. The ethPM specification [http://ethpm.github.io/ethpm-spec/] defines a schema to store all of this data in a structured JSON format, enabling quick and efficient transportation of smart contract ideas between tools and frameworks which support the specification.

Brownie supports ethPM, offering the following functionality:

	ethPM packages may be used to obtain deployment data, providing easy interaction with existing contracts on the main-net or testnets.

	Package source files may be installed within a Brownie project, to be inherited by existing contracts or used as a starting point when building something new.

	Packages can be generated from Brownie projects and released on ethPM registries, for simple and verified distribution.

Registry URIs

To obtain an ethPM package, you must know both the package name and the address of the registry where it is available. The simplest way to communicate this information is through a registry URI [https://docs.ethpm.com/uris#registry-uris]. Registry URIs adhere to the following format:

erc1319://[CONTRACT_ADDRESS]:[CHAIN_ID]/[PACKAGE_NAME]@[VERSION]

For example, here is a registry URI for the popular OpenZeppelin Math [https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/math] package, served by the Snake Charmers Zeppelin registry [http://explorer.ethpm.com/browse/mainnet/zeppelin.snakecharmers.eth]:

erc1319://zeppelin.snakecharmers.eth:1/math@1.0.0

Working with ethPM Packages

The brownie ethpm command-line interface is used to add and remove packages to a Brownie project, as well as to generate a package from a project.

Installing a Package

To install an ethPM package within a Brownie project:

$ brownie ethpm install [registry-uri]

This will add all of the package sources files into the project contracts/ folder.

If a package contains a source with an identical filename to one in your project, Brownie raises a FileExistsError unless the contents of the two files are identical, or the overwrite flag is set to True.

Listing Installed Packages

To view a list of currently installed packages within a project:

$ brownie ethpm list
Brownie - Python development framework for Ethereum

Found 2 installed packages:
 ├─access@1.0.0
 └─math@1.0.0

Any packages that are installed from a registry are also saved locally. To view a list of all locally available ethPM packages, and the registries they were downloaded from:

$ brownie ethpm all
Brownie - Python development framework for Ethereum

erc1319://erc20.snakecharmers.eth
 └─dai-dai@1.0.0

erc1319://zeppelin.snakecharmers.eth
 ├─access@1.0.0
 ├─gns@1.0.0
 └─math@1.0.0

Removing a Package

Removing an installed package from a Brownie project will delete any of that package’s sources files, as long as they are not also required by another package.

To remove a package, either delete all of it’s source files or use the following command:

$ brownie ethpm remove [package-name]

Unlinking a Package

You may wish to install a package as a starting point upon which you build your own project, and in doing so make changes to the package sources. This will cause Brownie to flag the package as “modified” and raise warnings when performing certain actions. You can silence these warnings by unlinking the package - deleting Brownie’s record that it is an ethPM package without removing the source files.

To unlink a package:

$ brownie ethpm unlink [package-name]

Creating and Releasing a Package

Brownie allows you to generate an ethPM package from your project and publish it to a registry. Packages generated by Brownie will always include:

	All contract source files within the project

	The name, ABI, bytecode and compiler settings for each contract in the project

Depending upon the configuartion, they may also optionally include:

	Addresses of deployed contracts instances across each network

	References to other ethPM packages that this package requires

The process of releasing a package is:

	Set all required fields within the ethpm-config.yaml configuration file.

	Generate the package manifest and verify the contents.

	Pin the manifest and sources to IPFS and publish the manifest URI to an ethPM registry.

Important

Ensure that all import statements within your source files use relative file paths [https://solidity.readthedocs.io/en/latest/layout-of-source-files.html#paths] (beginning with ./). If you use absolute paths, your package is more likely to have namespace collisions when imported into other projects.

Step 1: Package Configuration Settings

To create a package you must first set all required fields within the ethpm-config.yaml file in the root folder of your project.

Required Settings

The following settings must have a non-null value in order to generate a package.

	
package_name

	The package_name field defines a human readable name for the package. It must begin with a lowercase letter and be comprised of only lowercase letters, numeric characters, dashes and underscores. Package names must not exceed 255 characters in length.

Link: ethPM specification: package name [https://ethpm.github.io/ethpm-spec/package-spec.html#package-name-package-name]

	
version

	The version field defines the version number for the package. All versions should conform to the semver [https://semver.org/] versioning specificaion.

Link: ethPM specification: version [https://ethpm.github.io/ethpm-spec/package-spec.html#version-version]

	
settings.deployment_networks

	The deployment_networks field is a list of networks that should be included in the package’s deployments field. The name of each network must correspond to that of a network listed in the project configuration file.

In order for a deployment to be included:

	Persistence must be enabled for that network

	The bytecode of the deployed contract must be identical to the bytecode generated from the source code currently present in the project’s contracts/ folder

You can use a wildcard * to include deployments on all networks, or False to not include any deployments.

Link: ethPM specification: deployments [https://ethpm.github.io/ethpm-spec/package-spec.html#deployments-deployments]

	
settings.include_dependencies

	The include_dependencies field is a boolean to indicate how package dependencies should be handled.

	if True, Brownie will generate a standalone package without any listed dependencies.

	if False, Brownie will list all package dependencies within the manifest, and only include as much data about them as is required by the deployments field.

Note that you cannot set include_dependencies to False while your package contains dependency source files that have been modified. In this situation you must first unlink the modified packages.

Link: ethPM specification: build dependencies [https://ethpm.github.io/ethpm-spec/package-spec.html#build-dependencies-build-dependencies]

Optional Settings

	
meta

	The meta field, and all it’s subfields, provides metadata about the package. This data is not integral for package installation, but may be important or convenient to provide.

Any fields that are left blank will be omitted. You can also add additional fields, they will be included within the package.

Link: ethPM specification: package meta [https://ethpm.github.io/ethpm-spec/package-spec.html#package-meta-meta]

Example Configuration

Here is an example configuration for ethpm-config.yaml:

required fields
package_name: nftoken
version: 1.0.1
settings:
 deployment_networks:
 - mainnet
include_dependencies: false

optional fields
meta:
 description: A non-fungible implementation of the ERC20 standard, allowing scalable NFT transfers with fixed gas costs.
 authors:
 - Ben Hauser
 - Gabriel Shapiro
 license: MIT
 keywords:
 - ERC20
 - ERC721
 - NFT
 links:
 repository: https://github.com/iamdefinitelyahuman/nftoken

Step 2: Creating the Manifest

Once you have set the required fields in the configuration file, you can create a manifest with the following command:

$ brownie ethpm create

The manifest is saved locally as manifest.json in the project root folder. Note that this saved copy is not tightly packed and so does not strictly adhere the ethPM specification [https://ethpm.github.io/ethpm-spec/]. This is not the final copy to be pinned to IPFS, rather it is a human-readable version that you can use to verify it’s contents before releasing.

Once you have confirmed that the included fields are consistent with what you would like to publish, you are ready to release.

Step 3: Releasing the Package

There are two steps in releasing a package:

	Pinning the manifest and related sources to IPFS.

Brownie uses Infura’s [https://infura.io/] public IPFS gateway to interact with IPFS. Note that pinning files to IPFS can be a very slow proess. If you receive a timeout error, simply repeat the request. Files that have been successfully pinned will not need to be re-pinned.

	Calling the release [https://eips.ethereum.org/EIPS/eip-1319#write-api-specification] function of an ethPM registry with details of the package.

Brownie broadcasts this transaction on the “mainnet” network as defined in the project configuration file. The account that you send the transaction from must be approved to call release in the registry, otherwise it will fail. Depending on your use case you may wish to run your own registry, or include your files within an existing one. See the ethPM documentation [https://docs.ethpm.com/erc1319] for more information.

To release a package:

$ brownie ethpm release [registry] [account]

You must include the following arguments:

	registry: the address of an ethPM registry on the main-net

	account: the address that the transaction is sent from. It can be given as an alias to a local account, or as a hex string if the address is unlocked within the connected node.

Once the package is successfully released, Brownie provides you with a registry URI that you can share with others so they can easily access your package:

$ brownie ethpm release erc20.snakecharmers.eth registry_owner
Brownie - Python development framework for Ethereum

Generating manifest and pinning assets to IPFS...
Pinning "NFToken.sol"...
Pinning "NFMintable.sol"...
Pinning manifest...

Releasing nftoken@1.0.1 on "erc20.snakecharmers.eth"...
Enter the password for this account: *****

SUCCESS: nftoken@1.0.1 has been released!

URI: erc1319://erc20.snakecharmers.eth:1/nftoken@1.0.1

Interacting with Package Deployments

You can load an entire package as a Project object, which includes Contract instances for any contracts deployed on the currently active network:

>>> from brownie.project import from_ethpm
>>> maker = from_ethpm("erc1319://erc20.snakecharmers.eth:1/dai-dai@1.0.0")
>>> maker
<TempProject object 'dai-dai'>
>>> maker.dict()
{
 'DSToken': [<DSToken Contract object '0x89d24A6b4CcB1B6fAA2625fE562bDD9a23260359'>]
}

Or, create a Contract object to interact with a deployed instance of a specific contract within a package:

>>> from brownie import network, Contract
>>> network.connect('mainnet')
>>> ds = Contract("DSToken", manifest_uri="erc1319://erc20.snakecharmers.eth:1/dai-dai@1.0.0")
>>> ds
<DSToken Contract object '0x89d24A6b4CcB1B6fAA2625fE562bDD9a23260359'>

If the package does not include deployment information for the currently active network, a ContractNotFound exception is raised.

The Configuration File

Every project has a file brownie-config.yaml that holds all the configuration settings. The defaut configuration is as follows.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

	# Brownie configuration file
https://eth-brownie.readthedocs.io/en/stable/config.html
network:
 default: development # the default network that brownie connects to
 settings:
 gas_limit: "auto"
 gas_price: "auto"
 persist: true
 reverting_tx_gas_limit: false # if false, reverting tx's will raise without broadcasting
 networks:
 # any settings given here will replace the defaults
 development:
 host: http://127.0.0.1
 gas_price: 0
 persist: false
 reverting_tx_gas_limit: 6721975
 test_rpc:
 cmd: ganache-cli
 port: 8545
 gas_limit: 6721975
 accounts: 10
 evm_version: istanbul
 mnemonic: brownie
 # set your Infura API token to the environment variable WEB3_INFURA_PROJECT_ID
 mainnet:
 host: https://mainnet.infura.io/v3/$WEB3_INFURA_PROJECT_ID
 goerli:
 host: https://goerli.infura.io/v3/$WEB3_INFURA_PROJECT_ID
 kovan:
 host: https://kovan.infura.io/v3/$WEB3_INFURA_PROJECT_ID
 rinkeby:
 host: https://rinkeby.infura.io/v3/$WEB3_INFURA_PROJECT_ID
 ropsten:
 host: https://ropsten.infura.io/v3/$WEB3_INFURA_PROJECT_ID
 classic:
 host: https://www.ethercluster.com/etc
 kotti:
 host: https://www.ethercluster.com/kotti
pytest:
 # these settings replace the defaults when running pytest
 gas_limit: 6721975
 default_contract_owner: true
 reverting_tx_gas_limit: 6721975
 revert_traceback: true
compiler:
 evm_version: null
 minify_source: false
 solc:
 version: null
 optimize: true
 runs: 200

When using the Brownie console or writing scripts, you can view and edit configuration settings through the config dict. Any changes made in this way are temporary and will be reset when you exit Brownie or reset the network.

Note

If you are experiencing errors or warnings related to the configuration file, delete it and then run brownie init from the root folder of your project. This will create a clean copy of the config file.

Settings

The following settings are available:

	
network

	Defines the available networks and how Brownie interacts with them.

	default: The default network that brownie connects to when loaded. If a different network is required, you can override this setting with the --network flag in the command line.

	
network.settings

	Default settings for every network. The following properties can be set:

	gas_price: The default gas price for all transactions. If set to auto the gas price will be determined using web3.eth.gasPrice.

	gas_limit: The default gas limit for all transactions. If set to auto the gas limit will be determined using web3.eth.estimateGas.

	persist: If True, Brownie will remember information about deployed contracts in between sessions. This is enabled by default for all non-local networks.

	reverting_tx_gas_limit: The gas limit to use when a transaction would revert. If set to false, transactions that would revert will instead raise a VirtualMachineError.

	
network.networks

	Settings specific to individual networks. All values outlined above in settings are also valid here and will override the defaults.

Additionally, you must include a host setting in order to connect to that network:

	host: The address of the RPC API you wish to connect to. You can include environment variables, they will be expanded when attempting connect. The default settings use Infura [https://infura.io/] and look for the project ID token as WEB3_INFURA_PROJECT_ID.

	
networks.test_rpc

	An optional dictionary outlining settings for how the local RPC client is loaded. If not included, Brownie will not attempt to launch or attach to the process. test-rpc properties include:

	cmd: The command-line argument used to load the client. You can add any extra flags here as needed.

	port: Port the client should listen on.

	gas_limit: Block gas limit.

	accounts: The number of funded accounts in web3.eth.accounts.

	evm_version: The EVM version to compile for. If null the most recent one is used. Possible values are byzantium, constantinople, petersburg and istanbul.

	mnemonic: Local accounts are derived from this mnemonic. If set to null, you will have different local accounts each time Brownie is run.

	account_keys_path: Optional path to save generated accounts and private keys as a JSON object

	
compiler

	Compiler settings. See compiler settings for more information.

	evm_version: The EVM version to compile for. If null the most recent one is used. Possible values are byzantium, constantinople, petersburg, istanbul, atlantis and agharta.

	minify_source: If true, contract source is minified before compiling.

	
compiler.solc

	Settings specific to the Solidity compiler.

	version: The version of solc to use. Should be given as a string in the format 0.x.x. If set to null, the version is set based on the contract pragma. Brownie supports solc versions >=0.4.22.

	optimize: Set to true if you wish to enable compiler optimization.

	runs: The number of times the optimizer should run.

	
pytest

	Properties that only affect Brownie’s configuration when running tests.

	gas_limit: Replaces the default network gas limit.

	default_contract_owner: If false, deployed contracts will not remember the account that they were created by and you will have to supply a from kwarg for every contract transaction.

	reverting_tx_gas_limit: Replaces the default network setting for the gas limit on a tx that will revert.

	revert_traceback: if true, unhandled VirtualMachineError exceptions will include a full traceback for the reverted transaction.

The Build Folder

Each project has a build/ folder that contains various data files. If you are integrating a third party tool or hacking on the Brownie source code, it can be valuable to understand how these files are structured.

Compiler Artifacts

Brownie generates compiler artifacts for each contract within a project, which are stored in the build/contracts folder. The structure of these files are as follows:

{
 'abi': [], // contract ABI
 'allSourcePaths': [], // relative paths to every related contract source code file
 'ast': {}, // the AST object
 'bytecode': "0x00", // bytecode object as a hex string, used for deployment
 'bytecodeSha1': "", // hash of bytecode without final metadata
 'compiler': {}, // information about the compiler
 'contractName': "", // name of the contract
 'coverageMap': {}, // map for evaluating unit test coverage
 'deployedBytecode': "0x00", // bytecode as hex string after deployment
 'deployedSourceMap': "", // source mapping of the deployed bytecode
 'dependencies': [], // contracts and libraries that this contract inherits from or is linked to
 'language': "", // source code language (Solidity or Vyper)
 'offset': [], // source code offsets for this contract
 'opcodes': "", // deployed contract opcodes list
 'pcMap': [], // program counter map
 'sha1': "", // hash of the contract source, used to check if a recompile is necessary
 'source': "", // compiled source code as a string
 'sourceMap': "", // source mapping of undeployed bytecode
 'sourcePath': "", // relative path to the contract source code file
 'type': "" // contract, library, interface
}

This raw data is available within Brownie through the build module. If the contract was minified before compiling, Brownie will automatically adjust the source map offsets in pcMap and coverageMap to fit the current source.

>>> from brownie.project import build
>>> token_json = build.get("Token")
>>> token_json['contractName']
"Token"

Program Counter Map

Brownie generates an expanded version of the deployed source mapping [https://solidity.readthedocs.io/en/latest/miscellaneous.html#source-mappings] that it uses for debugging and test coverage evaluation. It is structured as a dictionary of dictionaries, where each key is a program counter as given by debug_traceTransaction.

If a value is false or the type equivalent, the key is not included.

{
 'pc': {
 'op': "", // opcode string
 'path': "", // relative path to the contract source code
 'offset': [0, 0], // source code start and stop offsets
 'fn': str, // name of the related method
 'jump': "", // jump instruction as given in the sourceMap (i, o)
 'value': "0x00", // hex string value of the instruction
 'statement': 0, // statement coverage index
 'branch': 0 // branch coverage index
 }
}

Coverage Map

All compiler artifacts include a coverageMap which is used when evaluating test coverage. It is structured as a nested dictionary in the following format:

{
 "statements": {
 "/path/to/contract/file.sol": {
 "ContractName.functionName": {
 "index": [start, stop] // source offsets
 }
 }
 },
 "branches": {
 "/path/to/contract/file.sol": {
 "ContractName.functionName": {
 "index": [start, stop, bool] // source offsets, jump boolean
 }
 }
 }
}

	Each statement index exists on a single program counter step. The statement is considered to have executed when the corresponding opcode executes within a transaction.

	Each branch index is found on two program counters, one of which is always a JUMPI instruction. A transaction must run both opcodes before the branch is considered to have executed. Whether it evaluates true or false depends on if the jump occurs.

See Coverage Map Indexes for more information.

Deployment Artifacts

Each time a contract is deployed to a network where persistence is enabled, Brownie saves a copy of the compiler artifact used for deployment. In this way accurate deployment data is maintained even if the contract’s source code is later modified.

Deployment artifacts are stored at:

build/deployments/[NETWORK_NAME]/[ADDRESS].json

When instantiating Contract objects from deployment artifacts, Brownie parses the files in order of creation time. If the contractName field in an artifact gives a name that longer exists within the project, the file is deleted.

Test Results and Coverage Data

The build/test.json file holds information about unit tests and coverage evaluation. It has the following format:

{
 "contracts": {
 "contractName": "0xff" // Hash of the contract source
 },
 //
 "tests": {
 "tests/path/of/test_file.py": {
 "coverage": true, // Has coverage eval been performed for this module?
 "isolated": [], // List of contracts deployed when executing this module. Used to determine if the tests must be re-run.
 "results": ".....", // Test results. Follows the same format as pytest's output (.sfex)
 "sha1": "0xff", // Hash of the module
 "txhash": [] // List of transaction hashes generated when running this module.
 },
 },
 // Coverage data for individual transactions
 "tx": {
 "0xff": { // Transaction hash
 "ContractName": {
 // Coverage map indexes (see below)
 "path/to/contract.sol": [
 [], // statements
 [], // branches that did not jump
 [] // branches that did jump
]
 }
 }
 }
}

Coverage Map Indexes

In tracking coverage, Brownie produces a set of coverage map indexes for each transaction. They are represented as lists of lists, each list containing key values that correspond to that contract’s coverage map. As an example, look at the following transaction coverage data:

{
 "ae6ccafbd0b0c8cf2eb623e390080854755f3fa7": {
 "Token": {
 // Coverage map indexes (see below)
 "contracts/Token.sol": [
 [1, 3],
 [],
 [5]
],
 "contracts/SafeMath.sol": [
 [8],
 [11],
 [11]
],
 }
 }
}

Here we see that within the Token contract:

	Statements 1 and 3 were executed in "contracts/Token.sol", as well as statement 8 in "contracts/SafeMath.sol"

	In "contracts/Token.sol", there were no branches that were seen and did not jump, branch 5 was seen and did jump

	In "contracts/SafeMath.sol", branch 11 was seen both jumping and not jumping

To convert these indexes to source offsets, we check the coverage map for Token. For example, here is branch 11:

{
 "contracts/SafeMath.sol": {
 "SafeMath.add": {
 "11": [147, 153, true]
 }
 }
}

From this we know that the branch is within the add function, and that the related source code starts at position 147 and ends at 153. The final boolean indicates whether a jump means the branch evaluated truthfully of falsely - in this case, a jump means it evaluated True.

Installed ethPM Package Data

The build/packages.json file holds information about installed ethPM packages. It has the following format:

{
 "packages": {
 "package_name": {
 "manifest_uri": "ipfs://", // ipfs URI of the package manifest
 "registry_address": "", // ethPM registry address the package was installed from
 "version": "" // package version string
 },
 ...
 },
 "sources": {
 "path/to/ContractFile.sol": {
 "md5": "", // md5 hash of the source file at installation
 "packages": [] // installed packages that include this source file
 },
 ...
 }
}

Brownie as a Python Package

Brownie can be imported as a package and used within regular Python scripts. This can be useful if you wish to incorporate a specific function or range of functionality within a greater project, or if you would like more granular control over how Brownie operates.

For quick reference, the following statements generate an environment and namespace identical to what you have when loading the Brownie console:

from brownie import *
p = project.load('my_projects/token', name="TokenProject")
p.load_config()
from brownie.project.TokenProject import *
network.connect('development')

Loading a Project

The brownie.project module is used to load a Brownie project.

>>> import brownie.project as project
>>> project.load('myprojects/token')
<Project object 'TokenProject'>

Once loaded, the Project object is available within brownie.project. This container holds all of the related ContractContainer objects.

>>> p = project.TokenProject
>>> p
<Project object 'TokenProject'>
>>> dict(p)
{'Token': <ContractContainer object 'Token'>, 'SafeMath': <ContractContainer object 'SafeMath'>}
>>> p.Token
<ContractContainer object 'Token'>

Alternatively, use a from import statement to import ContractContainer objects to the local namespace:

>>> from brownie.project.TokenProject import Token
>>> Token
<ContractContainer object 'Token'>

Importing with a wildcard will retrieve every available ContractContainer:

>>> from brownie.project.TokenProject import *
>>> Token
<ContractContainer object 'Token'>
>>> SafeMath
<ContractContainer object 'SafeMath'>

Loading Project Config Settings

When accessing Brownie via the regular Python interpreter, you must explicitely load configuration settings for a project:

>>> p = project.TokenProject
>>> p.load_config()

Accessing the Network

The brownie.network module contains methods for network interaction. The simplest way to connect is with the network.connect method:

>>> from brownie import network
>>> network.connect('development')

This method queries the network settings from the configuration file, launches the local RPC, and connects to it with a Web3 instance. Alternatively, you can accomplish the same with these commands:

>>> from brownie.network import rpc, web3
>>> rpc.launch('ganache-cli')
>>> web3.connect('http://127.0.0.1:8545')

Once connected, the accounts container is automatically populated with local accounts.

>>> from brownie.network import accounts
>>> len(accounts)
0
>>> network.connect('development')
>>> len(accounts)
10

Brownie API

This section provides a complete overview of the Brownie API. It includes all public classes and methods as well as limited internal documentation.

If you have not yet viewed the documentation under “Core Functionality” within the table of contents, you may wish to start there before exploring the API docs.

Hint

From the console you can call the builtin dir [https://docs.python.org/3.8/library/functions.html#dir] method to see available methods and attributes for any class. Classes, methods and attributes are highlighted in different colors.

You can also call help [https://docs.python.org/3.8/library/functions.html#help] on any class or method to view information on it’s functionality.

	brownie
	brownie

	brownie.exceptions

	brownie._config

	brownie._singleton

	brownie.convert
	brownie.convert.main

	brownie.convert.datatypes

	brownie.convert.normalize

	brownie.convert.utils

	brownie.network
	brownie.network.main

	brownie.network.account

	brownie.network.alert

	brownie.network.contract

	brownie.network.event

	brownie.network.state

	brownie.network.rpc

	brownie.network.transaction

	brownie.network.web3

	brownie.project
	brownie.project.main

	brownie.project.build

	brownie.project.compiler

	brownie.project.ethpm

	brownie.project.scripts

	brownie.project.sources

	brownie.test
	brownie.test.fixtures

	brownie.test.strategies

	brownie.test.stateful

	brownie.test.plugin

	brownie.test.manager

	brownie.test.output

	brownie.test.coverage

	brownie.utils
	brownie.utils.color

Brownie API

brownie

The brownie package is the main package containing all of Brownie’s functionality.

>>> from brownie import *
>>> dir()
['Fixed', 'Wei', 'accounts', 'alert', 'compile_source', 'config', 'history', 'network', 'project', 'rpc', 'run', 'web3']

brownie.exceptions

The exceptions module contains all Brownie Exception classes.

	
exception brownie.exceptions.CompilerError

	Raised by the compiler when there is an error within a contract’s source code.

	
exception brownie.exceptions.ContractExists

	Raised when attempting to create a new Contract object, when one already exists for the given address.

	
exception brownie.exceptions.ContractNotFound

	Raised when attempting to access a Contract object that no longer exists because the local network was reverted.

	
exception brownie.exceptions.EventLookupError

	Raised during lookup errors by EventDict and _EventItem.

	
exception brownie.exceptions.IncompatibleEVMVersion

	Raised when attempting to deploy a contract that was compiled to target an EVM version that is imcompatible than the currently active local RPC client.

	
exception brownie.exceptions.IncompatibleSolcVersion

	Raised when a project requires a version of solc that is not installed or not supported by Brownie.

	
exception brownie.exceptions.InvalidManifest

	Raised when attempting to process an improperly formatted ethPM package.

	
exception brownie.exceptions.MainnetUndefined

	Raised when an action requires interacting with the main-net, but no "mainnet" network is defined in brownie-config.yaml.

	
exception brownie.exceptions.NamespaceCollision

	Raised by Sources when the multiple source files contain a contract with the same name.

	
exception brownie.exceptions.PragmaError

	Raised when a contract has no pragma directive, or a pragma which requires a version of solc that cannot be installed.

	
exception brownie.exceptions.ProjectAlreadyLoaded

	Raised by project.load if a project has already been loaded.

	
exception brownie.exceptions.ProjectNotFound

	Raised by project.load when a project cannot be found at the given path.

	
exception brownie.exceptions.UndeployedLibrary

	Raised when attempting to deploy a contract that requires an unlinked library, but the library has not yet been deployed.

	
exception brownie.exceptions.UnknownAccount

	Raised when the Accounts container cannot locate a specified Account <brownie.network.account.Account> object.

	
exception brownie.exceptions.UnsetENSName

	Raised when an ENS name is unset (resolves to 0x00).

	
exception brownie.exceptions.UnsupportedLanguage

	Raised when attempting to compile a language that Brownie does not support.

	
exception brownie.exceptions.RPCConnectionError

	Raised when the RPC process is active and web3 <brownie.network.web3.Web3> is connected, but Brownie is unable to communicate with it.

	
exception brownie.exceptions.RPCProcessError

	Raised when the RPC process fails to launch successfully.

	
exception brownie.exceptions.RPCRequestError

	Raised when a direct request to the RPC client has failed, such as a snapshot or advancing the time.

	
exception brownie.exceptions.VirtualMachineError

	Raised when a contract call causes the EVM to revert.

brownie._config

The _config module handles all Brownie configuration settings. It is not designed to be accessed directly. If you wish to view or modify config settings while Brownie is running, import brownie.config which will return a ConfigDict with the active settings:

>>> from brownie import config
>>> type(config)
<class 'brownie._config.ConfigDict'>
>>> config['network_defaults']
{'name': 'development', 'gas_limit': False, 'gas_price': False}

ConfigDict

	
class brownie._config.ConfigDict

	Subclass of dict [https://docs.python.org/3/library/stdtypes.html#mapping-types-dict] that prevents adding new keys when locked. Used to hold config file settings.

>>> from brownie.types import ConfigDict
>>> s = ConfigDict({'test': 123})
>>> s
{'test': 123}

ConfigDict Internal Methods

	
classmethod ConfigDict._lock()

	Locks the ConfigDict. When locked, attempts to add a new key will raise a KeyError.

>>> s._lock()
>>> s['other'] = True
Traceback (most recent call last):
 File "<console>", line 1, in <module>
KeyError: 'other is not a known config setting'

	
classmethod ConfigDict._unlock()

	Unlocks the ConfigDict. When unlocked, new keys can be added.

>>> s._unlock()
>>> s['other'] = True
>>> s
{'test': 123, 'other': True}

	
classmethod ConfigDict._copy()

	Returns a copy of the object as a dict.

brownie._singleton

	
class brownie._singleton._Singleton

	

Internal metaclass used to create singleton [https://en.wikipedia.org/wiki/Singleton_pattern] objects. Instantiating a class derived from this metaclass will always return the same instance, regardless of how the child class was imported.

Convert API

The convert package contains methods and classes for representing and converting data.

brownie.convert.main

The main module contains methods for data conversion. Methods within this module can all be imported directly from the convert package.

	
brownie.convert.to_uint(value, type_str="uint256")

	Converts a value to an unsigned integer. This is equivalent to calling Wei and then applying checks for over/underflows.

	
brownie.convert.to_int(value, type_str="int256")

	Converts a value to a signed integer. This is equivalent to calling Wei and then applying checks for over/underflows.

	
brownie.convert.to_decimal(value)

	Converts a value to a decimal fixed point and applies bounds according to Vyper’s decimal type [https://vyper.readthedocs.io/en/latest/types.html#decimals].

	
brownie.convert.to_bool(value)

	Converts a value to a boolean. Raises ValueError if the given value does not match a value in (True, False, 0, 1).

	
brownie.convert.to_address(value)

	Converts a value to a checksummed address. Raises ValueError if value cannot be converted.

	
brownie.convert.to_bytes(value, type_str="bytes32")

	Converts a value to bytes. value can be given as bytes, a hex string, or an integer.

Raises OverflowError if the length of the converted value exceeds that specified by type_str.

Pads left with 00 if the length of the converted value is less than that specified by type_str.

>>> from brownie.convert import to_bytes
>>> to_bytes('0xff','bytes')
b'\xff'
>>> to_bytes('0xff','bytes16')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff'

	
brownie.convert.to_string(value)

	Converts a value to a string.

brownie.convert.datatypes

The datatypes module contains subclasses that Brownie uses to assist with conversion and comparison.

EthAddress

	
class brownie.convert.datatypes.EthAddress(value)

	String subclass for address comparisons. Raises a TypeError when compared to a non-address.

Addresses returned from a contract call or as part of an event log are given in this type.

>>> from brownie.convert import EthAddress
>>> e = EthAddress("0x0035424f91fd33084466f402d5d97f05f8e3b4af")
'0x0035424f91Fd33084466f402d5d97f05f8E3b4af'
>>> e == "0x3506424F91fD33084466F402d5D97f05F8e3b4AF"
False
>>> e == "0x0035424F91fD33084466F402d5D97f05F8e3b4AF"
True
>>> e == "0x35424F91fD33084466F402d5D97f05F8e3b4AF"
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Invalid type for comparison: '0x35424F91fD33084466F402d5D97f05F8e3b4AF' is not a valid address

>>> e == "potato"
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Invalid type for comparison: 'potato' is not a valid address

>>> type(e)
<class 'brownie.convert.EthAddress'>

Fixed

	
class brownie.convert.datatypes.Fixed(value)

	decimal.Decimal [https://docs.python.org/3.8/library/decimal.html#decimal.Decimal] subclass that allows comparisons, addition and subtraction against strings, integers and Wei.

Fixed is used for inputs and outputs to Vyper contracts that use the decimal type [https://vyper.readthedocs.io/en/latest/types.html#decimals].

Attempting comparisons or arithmetic against a float raises a TypeError.

>>> from brownie import Fixed
>>> Fixed(1)
Fixed('1')
>>> Fixed(3.1337)
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Cannot convert float to decimal - use a string instead

>>> Fixed("3.1337")
Fixed('3.1337')
>>> Fixed("12.49 gwei")
Fixed('12490000000')
>>> Fixed("-1.23") == -1.2300
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Cannot compare to floating point - use a string instead

>>> Fixed("-1.23") == "-1.2300"
True

HexString

	
class brownie.convert.datatypes.HexString(value, type_)

	Bytes subclass for hexstring comparisons. Raises TypeError if compared to a non-hexstring. Evaluates True for hex strings with the same value but differing leading zeros or capitalization.

All bytes values returned from a contract call or as part of an event log are given in this type.

>>> from brownie.convert import HexString
>>> h = HexString("0x00abcd", "bytes2")
"0xabcd"
>>> h == "0xabcd"
True
>>> h == "0x0000aBcD"
True
>>> h == "potato"
Traceback (most recent call last):
 File "<console>", line 1, in <module>
TypeError: Invalid type for comparison: 'potato' is not a valid hex string

ReturnValue

	
class brownie.convert.datatypes.ReturnValue

	Tuple subclass with limited dict [https://docs.python.org/3/library/stdtypes.html#mapping-types-dict]-like functionality. Used for iterable return values from contract calls or event logs.

>>> result = issuer.getCountry(784)
>>> result
(1, (0, 0, 0, 0), (100, 0, 0, 0))
>>> result[2]
(100, 0, 0, 0)
>>> result.dict()
{
 '_count': (0, 0, 0, 0),
 '_limit': (100, 0, 0, 0),
 '_minRating': 1
}
>>> result['_minRating']
1

When checking equality, ReturnValue objects ignore the type of container compared against. Tuples and lists will both return True so long as they contain the same values.

>>> result = issuer.getCountry(784)
>>> result
(1, (0, 0, 0, 0), (100, 0, 0, 0))
>>> result == (1, (0, 0, 0, 0), (100, 0, 0, 0))
True
>>> result == [1, [0, 0, 0, 0], [100, 0, 0, 0]]
True

	
classmethod ReturnValue.dict()

	Returns a dict of the named values within the object.

	
classmethod ReturnValue.items()

	Returns a set-like object providing a view on the object’s named items.

	
classmethod ReturnValue.keys()

	Returns a set-like object providing a view on the object’s keys.

Wei

	
class brownie.convert.datatypes.Wei(value)

	Integer subclass that converts a value to wei (the smallest unit of Ether, equivalent to 10-18 Ether) and allows comparisons, addition and subtraction using the same conversion.

Wei is useful for strings where you specify the unit, for large floats given in scientific notation, or where a direct conversion to int would cause inaccuracy from floating point errors.

Whenever a Brownie method takes an input referring to an amount of ether, the given value is converted to Wei. Balances and uint/int values returned in contract calls and events are given in Wei.

>>> from brownie import Wei
>>> Wei("1 ether")
1000000000000000000
>>> Wei("12.49 gwei")
12490000000
>>> Wei("0.029 shannon")
29000000
>>> Wei(8.38e32)
838000000000000000000000000000000
>>> Wei(1e18) == "1 ether"
True
>>> Wei("1 ether") < "2 ether"
True
>>> Wei("1 ether") - "0.75 ether"
250000000000000000

brownie.convert.normalize

The normalize module contains methods used to convert multiple values based on a contract ABI specification. Values are formatted via calls to the methods outlined under type conversions, and type classes are applied where appropriate.

	
normalize.format_input(abi, inputs)

	Formats inputs based on a contract method ABI.

	abi: A contract method ABI as a dict.

	inputs: List or tuple of values to format. Each value is converted using one of the methods outlined in brownie.convert.main.

Returns a list of values formatted for use by ContractTx or ContractCall.

>>> from brownie.convert.normalize import format_input
>>> abi = {'constant': False, 'inputs': [{'name': '_to', 'type': 'address'}, {'name': '_value', 'type': 'uint256'}], 'name': 'transfer', 'outputs': [{'name': '', 'type': 'bool'}], 'payable': False, 'stateMutability': 'nonpayable', 'type': 'function'}
>>> format_input(abi, ["0xB8c77482e45F1F44dE1745F52C74426C631bDD52","1 ether"])
('0xB8c77482e45F1F44dE1745F52C74426C631bDD52', 1000000000000000000)

	
normalize.format_output(abi, outputs)

	Standardizes outputs from a contract call based on the contract’s ABI.

	abi: A contract method ABI as a dict.

	outputs: List or tuple of values to format.

Returns a ReturnValue container where each value has been formatted using the one of the methods outlined in brownie.convert.main.

This method is used internally by ContractCall to ensure that contract output formats remain consistent, regardless of the RPC client being used.

>>> from brownie.convert.normalize import format_output
>>> abi = {'constant': True, 'inputs': [], 'name': 'name', 'outputs': [{'name': '', 'type': 'string'}], 'payable': False, 'stateMutability': 'view', 'type': 'function'}
>>> format_output(abi, ["0x5465737420546f6b656e"])
('Test Token',)

	
normalize.format_event(event)

	Standardizes outputs from an event fired by a contract.

	event: Decoded event data as given by the decode_event or decode_trace methods of the eth-event [https://github.com/iamdefinitelyahuman/eth-event] package.

The given event data is mutated in-place and returned. If an event topic is indexed, the type is changed to bytes32 and " (indexed)" is appended to the name.

brownie.convert.utils

The utils module contains helper methods used by other methods within the convert package.

	
utils.get_int_bounds(type_str)

	Given an integer type string, returns the lower and upper bound for that data type.

	
utils.get_type_strings(abi_params, substitutions)

	Converts a list of parameters from an ABI into a list of type strings.

Network API

The network package holds classes for interacting with the Ethereum blockchain. This is the most extensive package within Brownie and contains the majority of the user-facing functionality.

brownie.network.main

The main module contains methods for conncting to or disconnecting from the network. All of these methods are available directly from brownie.network.

	
main.connect(network: str = None, launch_rpc: bool = True) → None

	Connects to the network. Network settings are retrieved from brownie-config.yaml

	network: The network to connect to. If None, connects to the default network as specified in the config file.

	launch_rpc: If True and the configuration for this network includes test_rpc settings, attempts to launch or attach to a local RPC client.

Calling this method is favored over calling web3.connect and rpc.launch or rpc.attach individually.

>>> from brownie import network
>>> network.connect('development')

	
main.disconnect(kill_rpc: bool = True) → None

	Disconnects from the network.

The Web3 provider is cleared, the active network is set to None and the local RPC client is terminated if it was launched as a child process.

>>> from brownie import network
>>> network.disconnect()

	
main.is_connected() → bool

	Returns True if the Web3 object is connected to the network.

>>> from brownie import network
>>> network.is_connected()
True

	
main.show_active() → Optional[str]

	Returns the name of the network that is currently active, or None if not connected.

>>> from brownie import network
>>> network.show_active()
'development'

	
main.gas_limit(*args: Tuple[Union[int, str, bool, None]]) → Union[int, bool]

	Gets and optionally sets the default gas limit.

	If no argument is given, the current default is displayed.

	If an integer value is given, this will be the default gas limit.

	If set to auto, the gas limit is determined automatically via web3.eth.estimateGas.

Returns False if the gas limit is set automatically, or an int if it is set to a fixed value.

>>> from brownie import network
>>> network.gas_limit()
False
>>> network.gas_limit(6700000)
6700000
>>> network.gas_limit("auto")
False

	
main.gas_price(*args: Tuple[Union[int, str, bool, None]]) → Union[int, bool]

	Gets and optionally sets the default gas price.

	If an integer value is given, this will be the default gas price.

	If set to auto, the gas price is determined automatically via web3.eth.getPrice.

Returns False if the gas price is set automatically, or an int if it is set to a fixed value.

>>> from brownie import network
>>> network.gas_price()
False
>>> network.gas_price(10000000000)
10000000000
>>> network.gas_price("1.2 gwei")
1200000000
>>> network.gas_price("auto")
False

brownie.network.account

The Account module holds classes for interacting with Ethereum accounts for which you control the private key.

Classes in this module are not meant to be instantiated directly. The Accounts container is available as Account (or just a) and will create each Account automatically during initialization. Add more accounts using Accounts.add.

Accounts

	
class brownie.network.account.Accounts

	List-like Singleton container that holds all of the available accounts as Account or LocalAccount objects. When printed it will display as a list.

>>> from brownie.network import accounts
>>> accounts
[<Account object '0x7Ebaa12c5d1EE7fD498b51d4F9278DC45f8D627A'>, <Account object '0x186f79d227f5D819ACAB0C529031036D11E0a000'>, <Account object '0xC53c27492193518FE9eBff00fd3CBEB6c434Cf8b'>, <Account object '0x2929AF7BBCde235035ED72029c81b71935c49e94'>, <Account object '0xb93538FEb07b3B8433BD394594cA3744f7ee2dF1'>, <Account object '0x1E563DBB05A10367c51A751DF61167dE99A4d0A7'>, <Account object '0xa0942deAc0885096D8400D3369dc4a2dde12875b'>, <Account object '0xf427a9eC1d510D77f4cEe4CF352545071387B2e6'>, <Account object '0x2308D528e4930EFB4aF30793A3F17295a0EFa886'>, <Account object '0x2fb37EB570B1eE8Eda736c1BD1E82748Ec3d0Bf1'>]
>>> dir(accounts)
[add, at, clear, load, remove]

Accounts Methods

	
classmethod Accounts.add(priv_key=None)

	Creates a new LocalAccount with private key priv_key, appends it to the container, and returns the new account instance. If no private key is entered, one is randomly generated via os.urandom(8192).

>>> accounts.add()
<Account object '0xb094716BC0E9D3F3Fb42FF928bd76618435FeeAA'>
>>> accounts.add('8fa2fdfb89003176a16b707fc860d0881da0d1d8248af210df12d37860996fb2')
<Account object '0xc1826925377b4103cC92DeeCDF6F96A03142F37a'>

	
classmethod Accounts.at(address)

	Given an address as a string, returns the corresponding Account or LocalAccount from the container.

>>> accounts.at('0xc1826925377b4103cC92DeeCDF6F96A03142F37a')
<Account object '0xc1826925377b4103cC92DeeCDF6F96A03142F37a'>

	
classmethod Accounts.clear()

	Empties the container.

>>> accounts.clear()

	
classmethod Accounts.load(filename=None)

	Decrypts a keystore [https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition] file and returns a LocalAccount object.

Brownie will first attempt to find the keystore file as a path relative to the loaded project. If not found, it will look in the brownie/data/accounts folder within the Brownie package.

If filename is None, returns a list of available keystores in brownie/data/accounts.

>>> accounts.load()
['my_account']
>>> accounts.load('my_account')
Enter the password for this account:
<LocalAccount object '0xa9c2DD830DfFE8934fEb0A93BAbcb6e823e1FF05'>

	
classmethod Accounts.remove(address)

	Removes an address from the container. The address may be given as a string or an Account instance.

>>> accounts.remove('0xc1826925377b4103cC92DeeCDF6F96A03142F37a')

Accounts Internal Methods

	
classmethod Accounts._reset()

	Called by rpc._notify_registry when the local chain has been reset. All Account objects are recreated.

	
classmethod Accounts._revert(height)

	Called by rpc._notify_registry when the local chain has been reverted to a block height greater than zero. Adjusts Account object nonce values.

Account

	
class brownie.network.account.Account

	An ethereum address that you control the private key for, and so can send transactions from. Generated automatically from web3.eth.accounts and stored in the Accounts container.

>>> accounts[0]
<Account object '0x7Ebaa12c5d1EE7fD498b51d4F9278DC45f8D627A'>
>>> dir(accounts[0])
[address, balance, deploy, estimate_gas, nonce, transfer]

Account Attributes

	
Account.address

	The public address of the account. Viewable by printing the class, you do not need to call this attribute directly.

>>> accounts[0].address
'0x7Ebaa12c5d1EE7fD498b51d4F9278DC45f8D627A'

	
Account.nonce

	The current nonce of the address.

>>> accounts[0].nonce
0

Account Methods

	
classmethod Account.balance()

	Returns the current balance at the address, in Wei.

>>> accounts[0].balance()
100000000000000000000
>>> accounts[0].balance() == "100 ether"
True

	
classmethod Account.deploy(contract, *args, amount=None, gas_limit=None, gas_price=None)

	Deploys a contract.

	contract: A ContractContainer instance of the contract to be deployed.

	*args: Contract constructor arguments.

	amount: Amount of ether to send with the transaction. The given value is converted to Wei.

	gas_limit: Gas limit for the transaction. The given value is converted to Wei. If none is given, the price is set using eth_estimateGas.

	gas_price: Gas price for the transaction. The given value is converted to Wei. If none is given, the price is set using eth_gasPrice.

Returns a Contract instance upon success. If the transaction reverts or you do not wait for a confirmation, a TransactionReceipt is returned instead.

>>> Token
[]
>>> t = accounts[0].deploy(Token, "Test Token", "TST", 18, "1000 ether")

Transaction sent: 0x2e3cab83342edda14141714ced002e1326ecd8cded4cd0cf14b2f037b690b976
Transaction confirmed - block: 1 gas spent: 594186
Contract deployed at: 0x5419710735c2D6c3e4db8F30EF2d361F70a4b380
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>>
>>> t
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>> Token
[<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>]
>>> Token[0]
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

	
classmethod Account.estimate_gas(to, amount, data="")

	Estimates the gas required to perform a transaction. Raises a func:VirtualMachineError <brownie.exceptions.VirtualMachineError> if the transaction would revert.

The returned value is given as an int denominated in wei.

	to: Recipient address. Can be an Account instance or string.

	amount: Amount of ether to send. The given value is converted to Wei.

	data: Transaction data hexstring.

>>> accounts[0].estimate_gas(accounts[1], "1 ether")
21000

	
classmethod Account.transfer(self, to, amount, gas_limit=None, gas_price=None, data="")

	Broadcasts a transaction from this account.

	to: Recipient address. Can be an Account instance or string.

	amount: Amount of ether to send. The given value is converted to Wei.

	gas_limit: Gas limit for the transaction. The given value is converted to Wei. If none is given, the price is set using eth_estimateGas.

	gas_price: Gas price for the transaction. The given value is converted to Wei. If none is given, the price is set using eth_gasPrice.

	data: Transaction data hexstring.

Returns a TransactionReceipt instance.

>>> accounts[0].transfer(accounts[1], "1 ether")

Transaction sent: 0x0173aa6938c3a5e50b6dc7b4d38e16dab40811ab4e00e55f3e0d8be8491c7852
Transaction confirmed - block: 1 gas used: 21000 (100.00%)
<Transaction object '0x0173aa6938c3a5e50b6dc7b4d38e16dab40811ab4e00e55f3e0d8be8491c7852'>

LocalAccount

	
class brownie.network.account.LocalAccount

	Functionally identical to Account. The only difference is that a LocalAccount is one where the private key was directly inputted, and so is not found in web3.eth.accounts.

Note

Resetting the RPC client will delete all LocalAccount objects from the Account container.

>>> accounts.add()
<LocalAccount object '0x716E8419F2926d6AcE07442675F476ace972C580'>
>>> accounts[-1]
<LocalAccount object '0x716E8419F2926d6AcE07442675F476ace972C580'>

LocalAccount Attributes

	
LocalAccount.public_key

	The local account’s public key as a string.

>>> accounts[-1].public_key
'0x34b51e2913f5771acdddea7d353404f844b02a39ad4003c08afaa729993c43e890181327beaf352d81424cd277f4badc55be789a2817ea097bc82ea4801fee5b'

	
LocalAccount.private_key

	The local account’s private key as a string.

>>> accounts[-1].private_key
'0xd289bec8d9ad145aead13911b5bbf01936cbcd0efa0e26d5524b5ad54a61aeb8'

LocalAccount Methods

	
classmethod LocalAccount.save(filename, overwrite=False)

	Saves the account’s private key in an encrypto keystore [https://github.com/ethereum/wiki/wiki/Web3-Secret-Storage-Definition] file.

If the filename does not include a folder, the keystore is saved in the brownie/data/accounts folder within the Brownie package.

Returns the absolute path to the keystore file, as a string.

>>> accounts[-1].save('my_account')
Enter the password to encrypt this account with:
/python3.6/site-packages/brownie/data/accounts/my_account.json
>>>
>>> accounts[-1].save('~/my_account.json')
Enter the password to encrypt this account with:
/home/computer/my_account.json

PublicKeyAccount

	
class brownie.network.account.PublicKeyAccount

	Object for interacting with an Ethereum account where you do not control the private key. Can be used to check balances or to send ether to that address.

>>> from brownie.network.account import PublicKeyAccount
>>> pub = PublicKeyAccount("0x14b0Ed2a7C4cC60DD8F676AE44D0831d3c9b2a9E")
<PublicKeyAccount object '0x14b0Ed2a7C4cC60DD8F676AE44D0831d3c9b2a9E'>

Along with regular addresses, PublicKeyAccount objects can be instantiated using ENS domain names [https://ens.domains/]. The returned object will have the resolved address.

>>> PublicKeyAccount("ens.snakecharmers.eth")
<PublicKeyAccount object '0x808B53bF4D70A24bA5cb720D37A4835621A9df00'>

	
classmethod PublicKeyAccount.balance()

	Returns the current balance at the address, in Wei.

>>> pub.balance()
1000000000000000000

	
PublicKeyAccount.nonce

	The current nonce of the address.

>>> accounts[0].nonce
0

brownie.network.alert

The alert module is used to set up notifications and callbacks based on state changes in the blockchain.

Alert

Alerts and callbacks are handled by creating instances of the Alert class.

	
class brownie.network.alert.Alert(fn, args=None, kwargs=None, delay=2, msg=None, callback=None, repeat=False)

	An alert object. It is active immediately upon creation of the instance.

	fn: A callable to check for the state change.

	args: Arguments to supply to the callable.

	kwargs: Keyword arguments to supply to the callable.

	delay: Number of seconds to wait between checking for changes.

	msg: String to display upon change. The string will have .format(initial_value, new_value) applied before displaying.

	callback: A callback function to call upon a change in value. It should accept two arguments, the initial value and the new value.

	repeat: If False, the alert will terminate after the first time it first. if True, it will continue to fire with each change until it is stopped via Alert.stop(). If an int value is given, it will fire a total of n+1 times before terminating.

Alerts are non-blocking, threading is used to monitor changes. Once an alert has finished running it cannot be restarted.

A basic example of an alert, watching for a changed balance:

>>> from brownie.network.alert import Alert
>>> Alert(accounts[1].balance, msg="Account 1 balance has changed from {} to {}")
<brownie.network.alert.Alert object at 0x7f9fd25d55f8>

>>> alert.show()
[<brownie.network.alert.Alert object at 0x7f9fd25d55f8>]
>>> accounts[2].transfer(accounts[1], "1 ether")

Transaction sent: 0x912d6ac704e7aaac01be159a4a36bbea0dc0646edb205af95b6a7d20945a2fd2
Transaction confirmed - block: 1 gas spent: 21000
<Transaction object '0x912d6ac704e7aaac01be159a4a36bbea0dc0646edb205af95b6a7d20945a2fd2'>
ALERT: Account 1 balance has changed from 100000000000000000000 to 101000000000000000000

This example uses the alert’s callback function to perform a token transfer, and sets a second alert to watch for the transfer:

>>> alert.new(accounts[3].balance, msg="Account 3 balance has changed from {} to {}")
<brownie.network.alert.Alert object at 0x7fc743e415f8>

>>> def on_receive(old_value, new_value):
... accounts[2].transfer(accounts[3], new_value-old_value)

>>> alert.new(accounts[2].balance, callback=on_receive)
<brownie.network.alert.Alert object at 0x7fc743e55cf8>
>>> accounts[1].transfer(accounts[2],"1 ether")

Transaction sent: 0xbd1bade3862f181359f32dac02ffd1d145fdfefc99103ca0e3d28ffc7071a9eb
Transaction confirmed - block: 1 gas spent: 21000
<Transaction object '0xbd1bade3862f181359f32dac02ffd1d145fdfefc99103ca0e3d28ffc7071a9eb'>

Transaction sent: 0x8fcd15e38eed0a5c9d3d807d593b0ea508ba5abc892428eb2e0bb0b8f7dc3083
Transaction confirmed - block: 2 gas spent: 21000
ALERT: Account 3 balance has changed from 100000000000000000000 to 101000000000000000000

	
classmethod Alert.is_alive()

	Returns a boolean indicating if an alert is currently running.

>>> a.is_alive()
True

	
classmethod Alert.wait(timeout=None)

	Blocks until an alert has completed firing or the timeout value is reached. Similar to Thread.join().

>>> a.wait()

	
classmethod Alert.stop(wait=True)

	Stops the alert.

>>> alert_list = alert.show()
[<brownie.network.alert.Alert object at 0x7f9fd25d55f8>]
>>> alert_list[0].stop()
>>> alert.show()
[]

Module Methods

	
alert.new(fn, args=[], kwargs={}, delay=0.5, msg=None, callback=None, repeat=False)

	Alias for creating a new Alert instance.

>>> from brownie import alert
>>> alert.new(accounts[3].balance, msg="Account 3 balance has changed from {} to {}")
<brownie.network.alert.Alert object at 0x7fc743e415f8>

	
alert.show()

	Returns a list of all currently active alerts.

>>> alert.show()
[<brownie.network.alert.Alert object at 0x7f9fd25d55f8>]

	
alert.stop_all()

	Stops all currently active alerts.

>>> alert.show()
[<brownie.network.alert.Alert object at 0x7f9fd25d55f8>]
>>> alert.stop_all()
>>> alert.show()
[]

brownie.network.contract

The contract module contains classes for deploying and interacting with smart contracts.

When a project is loaded, Brownie automatically creates ContractContainer instances from on the files in the contracts/ folder. New ProjectContract instances are created via methods in the container.

If you wish to interact with a contract outside of a project where only the ABI is available, use the Contract class.

Arguments supplied to calls or transaction methods are converted using the methods outlined in the convert module.

Note

On networks where persistence is enabled, ProjectContract instances will remain between sessions. Use ContractContainer.remove to delete these objects when they are no longer needed. See the documentation on persistence for more information.

ContractContainer

	
class brownie.network.contract.ContractContainer

	A list-like container class that holds all ProjectContract instances of the same type, and is used to deploy new instances of that contract.

>>> Token
[]
>>> dir(Token)
[abi, at, bytecode, deploy, remove, signatures, topics, tx]

ContractContainer Attributes

	
ContractContainer.abi

	The ABI of the contract.

>>> Token.abi
[{'constant': True, 'inputs': [], 'name': 'name', 'outputs': [{'name': '', 'type': 'string'}], 'payable': False, 'stateMutability': 'view', 'type': 'function'}, {'constant': False, 'inputs': [{'name': '_spender', 'type': 'address'}, {'name': '_value', 'type': 'uint256'}], 'name': 'approve', 'outputs': [{'name': '', 'type': 'bool'}], 'payable': False, 'stateMutability': 'nonpayable', 'type': 'function'}, ...]

	
ContractContainer.bytecode

	The bytecode of the contract, without any applied constructor arguments.

>>> Token.bytecode
'608060405234801561001057600080fd5b506040516107873803806107878339810160409081528151602080840151928401516060850151928501805190959490940193909291610055916000918701906100d0565b5082516100699060019060208601906100d0565b50600282905560038190553360008181526004602090815 ...

	
ContractContainer.signatures

	A dictionary of bytes4 signatures for each contract method.

If you have a signature and need to find the method name, use ContractContainer.get_method.

>>> Token.signatures
{
 'allowance': "0xdd62ed3e",
 'approve': "0x095ea7b3",
 'balanceOf': "0x70a08231",
 'decimals': "0x313ce567",
 'name': "0x06fdde03",
 'symbol': "0x95d89b41",
 'totalSupply': "0x18160ddd",
 'transfer': "0xa9059cbb",
 'transferFrom': "0x23b872dd"
}
>>> Token.signatures.keys()
dict_keys(['name', 'approve', 'totalSupply', 'transferFrom', 'decimals', 'balanceOf', 'symbol', 'transfer', 'allowance'])
>>> Token.signatures['transfer']
0xa9059cbb

	
ContractContainer.topics

	A dictionary of bytes32 topics for each contract event.

>>> Token.topics
{
 'Approval': "0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925",
 'Transfer': "0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef"
}
>>> Token.topics.keys()
dict_keys(['Transfer', 'Approval'])
>>> Token.topics['Transfer']
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef

ContractContainer Methods

	
classmethod ContractContainer.deploy(*args)

	Deploys the contract.

	*args: Contract constructor arguments.

You can optionally include a dictionary of transaction parameters as the final argument. If you omit this or do not specify a 'from' value, the transaction will be sent from the same address that deployed the contract.

If the contract requires a library, the most recently deployed one will be used. If the required library has not been deployed yet an UndeployedLibrary <brownie.exceptions.UndeployedLibrary> exception is raised.

Returns a ProjectContract object upon success.

In the console if the transaction reverts or you do not wait for a confirmation, a TransactionReceipt is returned instead.

>>> Token
[]
>>> Token.deploy
<ContractConstructor object 'Token.constructor(string,string,uint256,uint256)'>
>>> t = Token.deploy("Test Token", "TST", 18, "1000 ether", {'from': accounts[1]})

Transaction sent: 0x2e3cab83342edda14141714ced002e1326ecd8cded4cd0cf14b2f037b690b976
Transaction confirmed - block: 1 gas spent: 594186
Contract deployed at: 0x5419710735c2D6c3e4db8F30EF2d361F70a4b380
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>>
>>> t
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>
>>> Token
[<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>]
>>> Token[0]
<Token Contract object '0x5419710735c2D6c3e4db8F30EF2d361F70a4b380'>

	
classmethod ContractContainer.at(address, owner=None)

	Returns a new Contract or ProjectContract object. The object is also appended to the container.

	address: Address where the contract is deployed.

	owner: Account instance to set as the contract owner. If transactions to the contract do not specify a 'from' value, they will be sent from this account.

This method compares the bytecode at the given address with the deployment bytecode for the given ContractContainer. A ProjectContract is returned if the bytecodes match, a Contract otherwise.

Raises ContractNotFound if there is no code at the given address.

>>> Token
[<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>]
>>> Token.at('0x79447c97b6543F6eFBC91613C655977806CB18b0')
<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>
>>> Token.at('0xefb1336a2E6B5dfD83D4f3a8F3D2f85b7bfb61DC')
File "brownie/lib/console.py", line 82, in _run
 exec('_result = ' + cmd, self.__dict__, local_)
File "<string>", line 1, in <module>
File "brownie/lib/components/contract.py", line 121, in at
 raise ValueError("No contract deployed at {}".format(address))
ValueError: No contract deployed at 0xefb1336a2E6B5dfD83D4f3a8F3D2f85b7bfb61DC

	
classmethod ContractContainer.get_method(calldata)

	Given the call data of a transaction, returns the name of the contract method as a string.

>>> tx = Token[0].transfer(accounts[1], 1000)

Transaction sent: 0xc1fe0c7c8fd08736718aa9106662a635102604ea6db4b63a319e43474de0b420
Token.transfer confirmed - block: 3 gas used: 35985 (26.46%)
<Transaction object '0xc1fe0c7c8fd08736718aa9106662a635102604ea6db4b63a319e43474de0b420'>
>>> tx.input
0xa9059cbb00000000000000000000000066ace0365c25329a407002d22908e25adeacb9bb0003e8
>>> Token.get_method(tx.input)
transfer

	
classmethod ContractContainer.remove(address)

	Removes a contract instance from the container.

>>> Token
[<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>]
>>> Token.remove('0x79447c97b6543F6eFBC91613C655977806CB18b0')
>>> Token
[]

ContractContainer Internal Methods

	
classmethod ContractContainer._reset()

	Called by rpc._notify_registry when the local chain has been reset. All Contract objects are removed from the container and marked as reverted.

	
classmethod ContractContainer._revert(height)

	Called by rpc._notify_registry when the local chain has been reverted to a block height greater than zero. Any Contract objects that no longer exist are removed from the container and marked as reverted.

Contract and ProjectContract

Contract and ProjectContract are both used to call or send transactions to smart contracts.

	Contract objects are instantiated directly and only require an ABI. They are used for calls to existing contracts that exist outside of a project.

	ProjectContract objects are created by calls to ContractContainer.deploy. Because they are compiled and deployed directly by Brownie, they provide much greater debugging capability.

These classes have identical APIs.

	
class brownie.network.contract.Contract(name, address=None, abi=None, manifest_uri=None, owner=None)

	A deployed contract. This class allows you to call or send transactions to the contract.

	name: The name of the contract.

	address: Address of the contract. Required unless a manifest_uri is given.

	abi: ABI of the contract. Required unless a manifest_uri is given.

	manifest_uri: EthPM registry manifest uri. If given, the ABI (and optionally the contract address) are retrieved from here.

	owner: An optional Account instance. If given, transactions to the contract are sent broadcasted from this account by default.

>>> from brownie import Contract
>>> Contract('0x79447c97b6543F6eFBC91613C655977806CB18b0', "Token", abi)
<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>

	
class brownie.network.contract.ProjectContract

	A deployed contract that is part of an active Brownie project. Along with making calls and transactions, this object allows access to Brownie’s full range of debugging and testing capability.

>>> Token[0]
<Token Contract object '0x79447c97b6543F6eFBC91613C655977806CB18b0'>
>>> dir(Token[0])
[abi, allowance, approve, balance, balanceOf, bytecode, decimals, name, signatures, symbol, topics, totalSupply, transfer, transferFrom, tx]

Contract Attributes

	
Contract.bytecode

	The bytecode of the deployed contract, including constructor arguments.

>>> Token[0].bytecode
'6080604052600436106100985763ffffffff7c010060003504166306fdde03811461009d578063095ea7b31461012757806318160ddd1461015f57806323b872dd14610186578063313ce567146101b057806370a08231146101c557806395d89b41...

	
Contract.tx

	The TransactionReceipt of the transaction that deployed the contract. If the contract was not deployed during this instance of brownie, it will be None.

>>> Token[0].tx
<Transaction object '0xcede03c7e06d2b4878438b08cd0cf4515942b3ba06b3cfd7019681d18bb8902c'>

Contract Methods

	
classmethod Contract.balance()

	Returns the current balance at the contract address, in Wei.

>>> Token[0].balance
0

Contract Internal Attributes

	
Contract._reverted

	Boolean. Once set to to True, any attempt to interact with the object raises a ContractNotFound exception. Set as a result of a call to rpc._notify_registry.

ContractCall

	
class brownie.network.contract.ContractCall(*args)

	Calls a non state-changing contract method without broadcasting a transaction, and returns the result. args must match the required inputs for the method.

The expected inputs are shown in the method’s __repr__ value.

Inputs and return values are formatted via methods in the convert module. Multiple values are returned inside a ReturnValue.

>>> Token[0].allowance
<ContractCall object 'allowance(address,address)'>
>>> Token[0].allowance(accounts[0], accounts[2])
0

ContractCall Attributes

	
ContractCall.abi

	The contract ABI specific to this method.

>>> Token[0].allowance.abi
{
 'constant': True,
 'inputs': [{'name': '_owner', 'type': 'address'}, {'name': '_spender', 'type': 'address'}],
 'name': "allowance",
 'outputs': [{'name': '', 'type': 'uint256'}],
 'payable': False,
 'stateMutability': "view",
 'type': "function"
}

	
ContractCall.signature

	The bytes4 signature of this method.

>>> Token[0].allowance.signature
'0xdd62ed3e'

ContractCall Methods

	
classmethod ContractCall.transact(*args)

	Sends a transaction to the method and returns a TransactionReceipt.

>>> tx = Token[0].allowance.transact(accounts[0], accounts[2])

Transaction sent: 0xc4f3a0addfe1e475c2466f30c750ca7a60450132b07102af610d8d56f170046b
Token.allowance confirmed - block: 2 gas used: 24972 (19.98%)
<Transaction object '0xc4f3a0addfe1e475c2466f30c750ca7a60450132b07102af610d8d56f170046b'>
>>> tx.return_value
0

ContractTx

	
class brownie.network.contract.ContractTx(*args)

	Broadcasts a transaction to a potentially state-changing contract method. Returns a TransactionReceipt.

The given args must match the required inputs for the method. The expected inputs are shown in the method’s __repr__ value.

Inputs are formatted via methods in the convert module.

You can optionally include a dictionary of transaction parameters as the final argument. If you omit this or do not specify a 'from' value, the transaction will be sent from the same address that deployed the contract.

>>> Token[0].transfer
<ContractTx object 'transfer(address,uint256)'>
>>> Token[0].transfer(accounts[1], 100000, {'from':accounts[0]})

Transaction sent: 0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0
Transaction confirmed - block: 2 gas spent: 51049
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>

ContractTx Attributes

	
ContractTx.abi

	The contract ABI specific to this method.

>>> Token[0].transfer.abi
{
 'constant': False,
 'inputs': [{'name': '_to', 'type': 'address'}, {'name': '_value', 'type': 'uint256'}],
 'name': "transfer",
 'outputs': [{'name': '', 'type': 'bool'}],
 'payable': False,
 'stateMutability': "nonpayable",
 'type': "function"
}

	
ContractTx.signature

	The bytes4 signature of this method.

>>> Token[0].transfer.signature
'0xa9059cbb'

ContractTx Methods

	
classmethod ContractTx.call(*args)

	Calls the contract method without broadcasting a transaction, and returns the result.

Inputs and return values are formatted via methods in the convert module. Multiple values are returned inside a ReturnValue.

>>> Token[0].transfer.call(accounts[2], 10000, {'from': accounts[0]})
True

	
classmethod ContractTx.encode_input(*args)

	Returns a hexstring of ABI calldata that can be used to call the method with the given arguments.

>>> calldata = Token[0].transfer.encode_input(accounts[1], 1000)
0xa9059cbb0000000000000000000000000d36bdba474b5b442310a5bfb989903020249bba0003e8
>>> accounts[0].transfer(Token[0], 0, data=calldata)

Transaction sent: 0x8dbf15878104571669f9843c18afc40529305ddb842f94522094454dcde22186
Token.transfer confirmed - block: 2 gas used: 50985 (100.00%)
<Transaction object '0x8dbf15878104571669f9843c18afc40529305ddb842f94522094454dcde22186'>

	
classmethod ContractTx.decode_output(hexstr)

	Decodes raw hexstring data returned by this method.

>>> Token[0].balanceOf.decode_output("0x003635c9adc5dea00000")
1000000000000000000000

OverloadedMethod

	
class brownie.network.contract.OverloadedMethod(address, name, owner)

	When a contract uses overloaded function names [https://solidity.readthedocs.io/en/latest/contracts.html#function-overloading], the ContractTx or ContractCall objects are stored inside a dict-like OverloadedMethod container.

>>> erc223 = ERC223Token[0]
>>> erc223.transfer
<OverloadedMethod object 'ERC223Token.transfer'>

Individual methods are mapped to keys that correspond to the function input types. Input types can be given as a single comma-seperated string or a tuple of strings. uint and uint256 are equivalent.

>>> erc223.transfer['address,uint']
<ContractTx object 'transfer(address,uint256)'>

>>> erc223.transfer['address', 'uint256', 'uint256']
<ContractTx object 'transfer(address,uint256,uint256)'>

brownie.network.event

The event module contains classes and methods related to decoding transaction event logs. It is largely a wrapper around eth-event [https://github.com/iamdefinitelyahuman/eth-event].

Brownie stores encrypted event topics in brownie/data/topics.json. The JSON file is loaded when this module is imported.

EventDict

	
class brownie.network.event.EventDict

	Hybrid container type that works as a dict [https://docs.python.org/3/library/stdtypes.html#mapping-types-dict] and a list [https://docs.python.org/3/library/stdtypes.html#lists]. Base class, used to hold all events that are fired in a transaction.

When accessing events inside the object:

	If the key is given as an integer, events are handled as a list in the order that they fired. An _EventItem is returned for the specific event that fired at the given position.

	If the key is given as a string, an _EventItem is returned that contains all the events with the given name.

>>> tx
<Transaction object '0xf1806643c21a69fcfa29187ea4d817fb82c880bcd7beee444ef34ea3b207cebe'>
>>> tx.events
{
 'CountryModified': [
 {
 'country': 1,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 },
 'country': 2,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 }
],
 'MultiSigCallApproved': {
 'callHash': "0x0013ae2e37373648c5161d81ca78d84e599f6207ad689693d6e5938c3ae4031d",
 'caller': "0xf9c1fd2f0452fa1c60b15f29ca3250dfcb1081b9"
 }
}
>>> tx.events['CountryModified']
[
 {
 'country': 1,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 },
 'country': 2,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 }
]
>>> tx.events[0]
{
 'callHash': "0x0013ae2e37373648c5161d81ca78d84e599f6207ad689693d6e5938c3ae4031d",
 'caller': "0xf9c1fd2f0452fa1c60b15f29ca3250dfcb1081b9"
}

	
classmethod EventDict.count(name)

	Returns the number of events that fired with the given name.

>>> tx.events.count('CountryModified')
2

	
classmethod EventDict.items()

	Returns a set-like object providing a view on the object’s items.

	
classmethod EventDict.keys()

	Returns a set-like object providing a view on the object’s keys.

	
classmethod EventDict.values()

	Returns an object providing a view on the object’s values.

Internal Classes and Methods

_EventItem

	
class brownie.network.event._EventItem

	Hybrid container type that works as a dict [https://docs.python.org/3/library/stdtypes.html#mapping-types-dict] and a list [https://docs.python.org/3/library/stdtypes.html#lists]. Represents one or more events with the same name that were fired in a transaction.

Instances of this class are created by EventDict, it is not intended to be instantiated directly.

When accessing events inside the object:

	If the key is given as an integer, events are handled as a list in the order that they fired. An _EventItem is returned for the specific event that fired at the given position.

	If the key is given as a string, _EventItem assumes that you wish to access the first event contained within the object. event['value'] is equivalent to event[0]['value'].

All values within the object are formatted by methods outlined in the convert module.

>>> event = tx.events['CountryModified']
<Transaction object '0xf1806643c21a69fcfa29187ea4d817fb82c880bcd7beee444ef34ea3b207cebe'>
>>> event
[
 {
 'country': 1,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 },
 'country': 2,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
 }
]
>>> event[0]
{
 'country': 1,
 'limits': (0, 0, 0, 0, 0, 0, 0, 0),
 'minrating': 1,
 'permitted': True
}
>>> event['country']
1
>>> event[1]['country']
2

	
_EventItem.name

	The name of the event(s) contained within this object.

>>> tx.events[2].name
CountryModified

	
_EventItem.pos

	A tuple giving the absolute position of each event contained within this object.

>>> event.pos
(1, 2)
>>> event[1].pos
(2,)
>>> tx.events[2] == event[1]
True

	
classmethod _EventItem.items()

	Returns a set-like object providing a view on the items in the first event within this object.

	
classmethod _EventItem.keys()

	Returns a set-like object providing a view on the keys in the first event within this object.

	
classmethod _EventItem.values()

	Returns an object providing a view on the values in the first event within this object.

Internal Methods

	
brownie.network.event._get_topics(abi)

	Generates encoded topics from the given ABI, merges them with those already known in topics.json, and returns a dictioary in the form of {'Name': "encoded topic hexstring"}.

>>> from brownie.network.event import _get_topics
>>> abi = [{'name': 'Approval', 'anonymous': False, 'type': 'event', 'inputs': [{'name': 'owner', 'type': 'address', 'indexed': True}, {'name': 'spender', 'type': 'address', 'indexed': True}, {'name': 'value', 'type': 'uint256', 'indexed': False}]}, {'name': 'Transfer', 'anonymous': False, 'type': 'event', 'inputs': [{'name': 'from', 'type': 'address', 'indexed': True}, {'name': 'to', 'type': 'address', 'indexed': True}, {'name': 'value', 'type': 'uint256', 'indexed': False}]}]
>>> _get_topics(abi)
{'Transfer': '0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef', 'Approval': '0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925'}

	
brownie.network.event._decode_logs(logs)

	Given an array of logs as returned by eth_getLogs or eth_getTransactionReceipt RPC calls, returns an EventDict.

>>> from brownie.network.event import _decode_logs
>>> tx = Token[0].transfer(accounts[1], 100)

Transaction sent: 0xfefc3b7d912ed438b312414fb31d94ff757970f4d2e74dd0950d5c58cc23fdb1
Token.transfer confirmed - block: 2 gas used: 50993 (33.77%)
<Transaction object '0xfefc3b7d912ed438b312414fb31d94ff757970f4d2e74dd0950d5c58cc23fdb1'>
>>> e = _decode_logs(tx.logs)
>>> repr(e)
<brownie.types.types.EventDict object at 0x7feed74aebe0>
>>> e
{
 'Transfer': {
 'from': "0x1ce57af3672a16b1d919aeb095130ab288ca7456",
 'to': "0x2d72c1598537bcf4a4af97668b3a24e68b7d0cc5",
 'value': 100
 }
}

	
brownie.network.event._decode_trace(trace)

	Given the structLog from a debug_traceTransaction RPC call, returns an EventDict.

>>> from brownie.network.event import _decode_trace
>>> tx = Token[0].transfer(accounts[2], 1000, {'from': accounts[3]})

Transaction sent: 0xc6365b065492ea69ad3cbe26039a45a68b2e9ab9d29c2ff7d5d9162970b176cd
Token.transfer confirmed (Insufficient Balance) - block: 2 gas used: 23602 (19.10%)
<Transaction object '0xc6365b065492ea69ad3cbe26039a45a68b2e9ab9d29c2ff7d5d9162970b176cd'>
>>> e = _decode_trace(tx.trace)
>>> repr(e)
<brownie.types.types.EventDict object at 0x7feed74aebe0>
>>> e
{}

brownie.network.state

The state module contains classes to record transactions and contracts as they occur on the blockchain.

TxHistory

	
class brownie.network.state.TxHistory

	List-like Singleton container that contains TransactionReceipt objects. Whenever a transaction is broadcast, the TransactionReceipt is automatically added.

>>> from brownie.network.state import TxHistory
>>> history = TxHistory()
>>> history
[]
>>> dir(history)
[copy, from_sender, of_address, to_receiver]

TxHistory Attributes

	
TxHistory.gas_profile

	A dict that tracks gas cost statistics for contract function calls over time.

>>> history.gas_profile
{
 'Token.constructor': {
 'avg': 742912,
 'count': 1,
 'high': 742912,
 'low': 742912
 },
 'Token.transfer': {
 'avg': 43535,
 'count': 2,
 'high': 51035,
 'low': 36035
 }
}

TxHistory Methods

	
classmethod TxHistory.copy()

	Returns a shallow copy of the object as a list.

>>> history
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>]
>>> c = history.copy()
>>> c
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>]
>>> type(c)
<class 'list'>

	
classmethod TxHistory.from_sender(account)

	Returns a list of transactions where the sender is Account.

>>> history.from_sender(accounts[1])
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>]

	
classmethod TxHistory.to_receiver(account)

	Returns a list of transactions where the receiver is Account.

>>> history.to_receiver(accounts[2])
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>]

	
classmethod TxHistory.of_address(account)

	Returns a list of transactions where Account is the sender or receiver.

>>> history.of_address(accounts[1])
[<Transaction object '0xe803698b0ade1598c594b2c73ad6a656560a4a4292cc7211b53ffda4a1dbfbe8'>]

TxHistory Internal Methods

	
classmethod TxHistory._reset()

	Called by rpc._notify_registry when the local chain has been reset. All TransactionReceipt objects are removed from the container.

	
classmethod TxHistory._revert(height)

	Called by rpc._notify_registry when the local chain has been reverted to a block height greater than zero. Any TransactionReceipt objects that no longer exist are removed from the container.

Internal Methods

The internal methods in the state module are primarily used for tracking and adjusting Contract instances whenever the local RPC network is reverted or reset.

	
brownie.network.state._add_contract(contract)

	Adds a Contract or ProjectContract object to the global contract record.

	
brownie.network.state._find_contract(address)

	Given an address, returns the related Contract or ProjectContract object. If none exists, returns None.

This method is used internally by Brownie to locate a ProjectContract when the project it belongs to is unknown.

	
brownie.network.state._remove_contract(contract)

	Removes a Contract or ProjectContract object to the global contract record.

	
brownie.network.state._get_current_dependencies()

	Returns a list of the names of all currently deployed contracts, and of every contract that these contracts are dependent upon.

Used during testing to determine which contracts must change before a test needs to be re-run.

brownie.network.rpc

The rpc module contains the Rpc class, which is used to interact with ganache-cli when running a local RPC environment.

Note

Account balances, contract containers and transaction history are automatically modified when the local RPC is terminated, reset or reverted.

Rpc

	
class brownie.network.rpc.Rpc

	Singleton object for interacting with ganache-cli when running a local RPC environment. When using the console or writing tests, an instance of this class is available as rpc.

>>> from brownie import rpc
>>> rpc
<lib.components.eth.Rpc object at 0x7ffb7cbab048>
>>> dir(rpc)
[is_active, kill, launch, mine, reset, revert, sleep, snapshot, time]

Rpc Methods

	
classmethod Rpc.launch(cmd)

	Launches the local RPC client as a subprocess [https://docs.python.org/3/library/subprocess.html#subprocess.Popen]. cmd is the command string requiried to run it.

If the process cannot load successfully, raises brownie.RPCProcessError.

If a provider has been set in Web3 but is unable to connect after launching, raises RPCConnectionError.

>>> rpc.launch('ganache-cli')
Launching 'ganache-cli'...

	
classmethod Rpc.attach(laddr)

	Attaches to an already running RPC client.

laddr: Address that the client is listening at. Can be supplied as a string "http://127.0.0.1:8545" or tuple ("127.0.0.1", 8545).

Raises a ProcessLookupError if the process cannot be found.

>>> rpc.attach('http://127.0.0.1:8545')

	
classmethod Rpc.kill(exc=True)

	Kills the RPC subprocess. Raises SystemError if exc is True and the RPC is not currently active.

>>> rpc.kill()
Terminating local RPC client...

Note

Brownie registers this method with the atexit [https://docs.python.org/3/library/atexit.html] module. It is not necessary to explicitly kill Rpc before terminating a script or console session.

	
classmethod Rpc.reset()

	Resets the RPC to the genesis state by loading a snapshot. This is NOT equivalent to calling rpc.kill and then rpc.launch.

>>> rpc.reset()

	
classmethod Rpc.is_active()

	Returns a boolean indicating if the RPC process is currently active.

>>> rpc.is_active()
False
>>> rpc.launch()
>>> rpc.is_active()
True

	
classmethod Rpc.is_child()

	Returns a boolean indicating if the RPC process is a child process of Brownie. If the RPC is not currently active, returns False.

>>> rpc.is_child()
True

	
classmethod Rpc.evm_version()

	Returns the currently active EVM version as a string.

>>> rpc.evm_version()
'istanbul'

	
classmethod Rpc.evm_compatible(version)

	Returns a boolean indicating if the given version is compatible with the currently active EVM version.

>>> rpc.evm_compatible('byzantium')
True

	
classmethod Rpc.time()

	Returns the current epoch time in the RPC as an integer.

>>> rpc.time()
1550189043

	
classmethod Rpc.sleep(seconds)

	Advances the RPC time. You can only advance the time by whole seconds.

>>> rpc.time()
1550189043
>>> rpc.sleep(100)
>>> rpc.time()
1550189143

	
classmethod Rpc.mine(blocks=1)

	Forces new blocks to be mined.

>>> web3.eth.blockNumber
0
>>> rpc.mine()
Block height at 1
>>> web3.eth.blockNumber
1
>>> rpc.mine(3)
Block height at 4
>>> web3.eth.blockNumber
4

	
classmethod Rpc.snapshot()

	Creates a snapshot at the current block height.

>>> rpc.snapshot()
Snapshot taken at block height 4

	
classmethod Rpc.revert()

	Reverts the blockchain to the latest snapshot. Raises ValueError if no snapshot has been taken.

>>> rpc.snapshot()
Snapshot taken at block height 4
>>> accounts[0].balance()
100000000000000000000
>>> accounts[0].transfer(accounts[1], "10 ether")

Transaction sent: 0xd5d3b40eb298dfc48721807935eda48d03916a3f48b51f20bcded372113e1dca
Transaction confirmed - block: 5 gas used: 21000 (100.00%)
<Transaction object '0xd5d3b40eb298dfc48721807935eda48d03916a3f48b51f20bcded372113e1dca'>
>>> accounts[0].balance()
89999580000000000000
>>> rpc.revert()
Block height reverted to 4
>>> accounts[0].balance()
100000000000000000000

Rpc Internal Methods

	
classmethod Rpc._internal_snap()

	Takes an internal snapshot at the current block height.

	
classmethod Rpc._internal_revert()

	Reverts to the most recently taken internal snapshot.

Note

When calling this method, you must ensure that the user has not had a chance to take their own snapshot since _internal_snap was called.

Internal Methods

	
class brownie.network.rpc._revert_register(obj)

	Registers an object to be called whenever the local RPC is reset or reverted. Objects that register must include _revert and _reset methods in order to receive these callbacks.

	
class brownie.network.rpc._notify_registry(height)

	Calls each registered object’s _revert or _reset method after the local state has been reverted.

brownie.network.transaction

The transaction module contains the TransactionReceipt class and related internal methods.

TransactionReceipt

	
class brownie.network.transaction.TransactionReceipt

	An instance of this class is returned whenever a transaction is broadcasted. When printed in the console, the transaction hash will appear yellow if the transaction is still pending or red if the transaction caused the EVM to revert.

Many of the attributes return None while the transaction is still pending.

>>> tx = Token[0].transfer
<ContractTx object 'transfer(address,uint256)'>
>>> Token[0].transfer(accounts[1], 100000, {'from':accounts[0]})

Transaction sent: 0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0
Transaction confirmed - block: 2 gas spent: 51049
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> dir(tx)
[block_number, call_trace, contract_address, contract_name, error, events, fn_name, gas_limit, gas_price, gas_used, info, input, logs, nonce, receiver, sender, status, txid, txindex, value]

TransactionReceipt Attributes

	
TransactionReceipt.block_number

	The block height at which the transaction confirmed.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.block_number
2

	
TransactionReceipt.contract_address

	The address of the contract deployed in this transaction, if the transaction was a deployment.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.contract_address
None

For contracts deployed as the result of calling another contract, see TransactionReceipt.new_contracts.

	
TransactionReceipt.contract_name

	The name of the contract that was called or deployed in this transaction.

>>> tx
<Transaction object '0xcdd07c6235bf093e1f30ac393d844550362ebb9b314b7029667538bfaf849749'>
>>> tx.contract_name
Token

	
TransactionReceipt.events

	An EventDict of decoded event logs for this transaction.

Note

If you are connected to an RPC client that allows for debug_traceTransaction, event data is still available when the transaction reverts.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.events
{
 'Transfer': {
 'from': "0x94dd96c7e6012c927537cd789c48c42a1d1f790d",
 'to': "0xc45272e89a23d1a15a24041bce7bc295e79f2d13",
 'value': 100000
 }
}

	
TransactionReceipt.fn_name

	The name of the function called by the transaction.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.fn_name
'transfer'

	
TransactionReceipt.gas_limit

	The gas limit of the transaction, in wei as an int.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.gas_limit
150921

	
TransactionReceipt.gas_price

	The gas price of the transaction, in wei as an int.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.gas_price
2000000000

	
TransactionReceipt.gas_used

	The amount of gas consumed by the transaction, in wei as an int.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.gas_used
51049

	
TransactionReceipt.input

	The complete calldata of the transaction as a hexstring.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.input
'0xa9059cbb00000000000000000000000031d504908351d2d87f3d6111f491f0b52757b592000a'

	
TransactionReceipt.internal_transfers

	A list of all internal ether transfers that occurred during the transaction. Transfers are sequenced in the order they took place, and represented as dictionaries containing the following fields:

	from: Sender address

	to: Receiver address

	value: Amount of ether that was transferred in Wei

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.internal_transfers
[
 {
 "from": "0x79447c97b6543F6eFBC91613C655977806CB18b0",
 "to": "0x21b42413bA931038f35e7A5224FaDb065d297Ba3",
 "value": 100
 }
]

	
TransactionReceipt.logs

	The raw event logs for the transaction. Not available if the transaction reverts.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.logs
[AttributeDict({'logIndex': 0, 'transactionIndex': 0, 'transactionHash': HexBytes('0xa8afb59a850adff32548c65041ec253eb64e1154042b2e01e2cd8cddb02eb94f'), 'blockHash': HexBytes('0x0b93b4cf230c9ef92b990de9cd62611447d83d396f1b13204d26d28bd949543a'), 'blockNumber': 6, 'address': '0x79447c97b6543F6eFBC91613C655977806CB18b0', 'data': '0x0000000000000000000000006b5132740b834674c3277aafa2c27898cbe740f600000000000000000000000031d504908351d2d87f3d6111f491f0b52757b592000a', 'topics': [HexBytes('0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef')], 'type': 'mined'})]

	
TransactionReceipt.modified_state

	Boolean indicating if this transaction resuled in any state changes on the blockchain.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.modified_state
True

	
TransactionReceipt.new_contracts

	A list of new contract addresses that were deployed during this transaction, as the result of contract call.

>>> tx = Deployer.deploy_new_contract()
Transaction sent: 0x6c3183e41670101c4ab5d732bfe385844815f67ae26d251c3bd175a28604da92
 Gas price: 0.0 gwei Gas limit: 79781
 Deployer.deploy_new_contract confirmed - Block: 4 Gas used: 79489 (99.63%)

>>> tx.new_contracts
["0x1262567B3e2e03f918875370636dE250f01C528c"]

	
TransactionReceipt.nonce

	The nonce of the transaction.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.nonce
2

	
TransactionReceipt.receiver

	The address the transaction was sent to, as a string.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.receiver
'0x79447c97b6543F6eFBC91613C655977806CB18b0'

	
TransactionReceipt.revert_msg

	The error string returned when a transaction causes the EVM to revert, if any.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.revert_msg
None

	
TransactionReceipt.return_value

	The value returned from the called function, if any. Only available if the RPC client allows debug_traceTransaction.

If more then one value is returned, they are stored in a ReturnValue.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.return_value
True

	
TransactionReceipt.sender

	The address the transaction was sent from. Where possible, this will be an Account instance instead of a string.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.sender
<Account object '0x6B5132740b834674C3277aAfa2C27898CbE740f6'>

	
TransactionReceipt.status

	The status of the transaction: -1 for pending, 0 for failed, 1 for success.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.status
1

	
TransactionReceipt.trace

	An expanded transaction trace [https://github.com/ethereum/go-ethereum/wiki/Tracing:-Introduction#user-content-basic-traces] structLog, returned from the debug_traceTransaction [https://github.com/ethereum/go-ethereum/wiki/Management-APIs#user-content-debug_tracetransaction] RPC endpoint. If you are using Infura this attribute is not available.

Along with the standard data, the structLog also contains the following additional information:

	address: The address of the contract that executed this opcode

	contractName: The name of the contract

	fn: The name of the function

	jumpDepth: The number of jumps made since entering this contract. The initial function has a value of 1.

	source: The path and offset of the source code associated with this opcode.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> len(tx.trace)
239
>>> tx.trace[0]
{
 'address': "0x79447c97b6543F6eFBC91613C655977806CB18b0",
 'contractName': "Token",
 'depth': 0,
 'error': "",
 'fn': "Token.transfer",
 'gas': 128049,
 'gasCost': 22872,
 'jumpDepth': 1,
 'memory': [],
 'op': "PUSH1",
 'pc': 0,
 'source': {
 'filename': "contracts/Token.sol",
 'offset': [53, 2053]
 },
 'stack': [],
 'storage': {
 }
}

	
TransactionReceipt.txid

	The transaction hash.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.txid
'0xa8afb59a850adff32548c65041ec253eb64e1154042b2e01e2cd8cddb02eb94f'

	
TransactionReceipt.txindex

	The integer of the transaction’s index position in the block.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.txindex
0

	
TransactionReceipt.value

	The value of the transaction, in Wei.

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.value
0

TransactionReceipt Methods

	
classmethod TransactionReceipt.info()

	Displays verbose information about the transaction, including event logs and the error string if a transaction reverts.

>>> tx = accounts[0].transfer(accounts[1], 100)
<Transaction object '0x2facf2d1d2fdfa10956b7beb89cedbbe1ba9f4a2f0592f8a949d6c0318ec8f66'>
>>> tx.info()

Transaction was Mined

Tx Hash: 0x2facf2d1d2fdfa10956b7beb89cedbbe1ba9f4a2f0592f8a949d6c0318ec8f66
From: 0x5fe657e72E76E7ACf73EBa6FA07ecB40b7312d80
To: 0x5814fC82d51732c412617Dfaecb9c05e3B823253
Value: 100
Block: 1
Gas Used: 21000

 Events In This Transaction

 Transfer
 from: 0x5fe657e72E76E7ACf73EBa6FA07ecB40b7312d80
 to: 0x31d504908351d2d87f3d6111f491f0b52757b592
 value: 100

	
classmethod TransactionReceipt.call_trace()

	Returns the sequence of contracts and functions called while executing this transaction, and the step indexes where each new method is entered and exitted. Any functions that terminated with REVERT or INVALID opcodes are highlighted in red.

>>> tx = Token[0].transferFrom(accounts[2], accounts[3], "10000 ether")

Transaction sent: 0x0d96e8ceb555616fca79dd9d07971a9148295777bb767f9aa5b34ede483c9753
Token.transferFrom confirmed (reverted) - block: 4 gas used: 25425 (26.42%)

>>> tx.call_trace()
Call trace for '0x0d96e8ceb555616fca79dd9d07971a9148295777bb767f9aa5b34ede483c9753':
Token.transfer 0:244 (0x4A32104371b05837F2A36dF6D850FA33A92a178D)
└─Token.transfer 72:226
 ├─SafeMath.sub 100:114
 └─SafeMath.add 149:165

	
classmethod TransactionReceipt.traceback()

	Returns an error traceback for the transaction, similar to a regular python traceback. If the transaction did not revert, returns an empty string.

>>> tx = >>> Token[0].transfer(accounts[1], "100000 ether")

Transaction sent: 0x9542e92a904e9d345def311ea52f22c3191816c6feaf7286f9b48081ab255ffa
Token.transfer confirmed (reverted) - block: 5 gas used: 23956 (100.00%)
<Transaction object '0x9542e92a904e9d345def311ea52f22c3191816c6feaf7286f9b48081ab255ffa'>

>>> tx.traceback()
Traceback for '0x9542e92a904e9d345def311ea52f22c3191816c6feaf7286f9b48081ab255ffa':
Trace step 99, program counter 1699:
 File "contracts/Token.sol", line 67, in Token.transfer:
 balances[msg.sender] = balances[msg.sender].sub(_value);
Trace step 110, program counter 1909:
 File "contracts/SafeMath.sol", line 9, in SafeMath.sub:
 require(b <= a);

	
classmethod TransactionReceipt.error(pad=3)

	Displays the source code that caused the first revert in the transaction, if any.

	pad: Number of unrelated liness of code to include before and after the relevant source

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.error()
Source code for trace step 86:
 File "contracts/SafeMath.sol", line 9, in SafeMath.sub:

 c = a + b;
 require(c >= a);
 }
 function sub(uint a, uint b) internal pure returns (uint c) {
 require(b <= a);
 c = a - b;
 }
 function mul(uint a, uint b) internal pure returns (uint c) {
 c = a * b;

	
classmethod TransactionReceipt.source(idx, pad=3)

	Displays the associated source code for a given stack trace step.

	idx: Stack trace step index

	pad: Number of unrelated liness of code to include before and after the relevant source

>>> tx
<Transaction object '0xac54b49987a77805bf6bdd78fb4211b3dc3d283ff0144c231a905afa75a06db0'>
>>> tx.source(86)
Source code for trace step 86:
 File "contracts/SafeMath.sol", line 9, in SafeMath.sub:

 c = a + b;
 require(c >= a);
 }
 function sub(uint a, uint b) internal pure returns (uint c) {
 require(b <= a);
 c = a - b;
 }
 function mul(uint a, uint b) internal pure returns (uint c) {
 c = a * b;

brownie.network.web3

The web3 module contains a slightly modified version of the web3.py Web3 class that is used throughout various Brownie modules for RPC communication.

Web3

See the Web3 API documentation [https://web3py.readthedocs.io/en/stable/web3.main.html#web3.Web3] for detailed information on all the methods and attributes available here. This document only outlines methods that differ from the normal Web3 public interface.

	
class brownie.network.web3.Web3

	Brownie subclass of Web3. An instance is created at brownie.network.web3.web and available for import from the main package.

>>> from brownie import web3
>>>

Web3 Methods

	
classmethod Web3.connect(uri)

	Connects to a provider [https://web3py.readthedocs.io/en/stable/providers.html]. uri can be the path to a local IPC socket, a websocket address beginning in ws:// or a URL.

>>> web3.connect('https://127.0.0.1:8545')
>>>

	
classmethod Web3.disconnect()

	Disconnects from a provider.

>>> web3.disconnect()
>>>

Web3 Attributes

	
classmethod Web3.chain_uri()

	Returns a BIP122 blockchain URI [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki] for the active chain.

>>> web3.chain_uri
'blockchain://a82ff4a4184a7b9e57aba1ae1ef91214c7d14a1040f4e1df8c0ec95f87a5bb62/block/66760b538b3f02f6fbd4a745b3943af9fda982f2b8b26b502180ed96b2c7f52d'

	
classmethod Web3.genesis_hash()

	Returns the hash of the genesis block for the active chain, as a string without a 0x prefix.

>>> web3.genesis_hash
'41941023680923e0fe4d74a34bdac8141f2540e3ae90623718e47d66d1ca4a2d'

Web3 Internals

	
Web3._mainnet

	Provides access to a Web3 instance connected to the mainnet network as defined in the configuration file. Used internally for ENS [https://ens.domains/] and ethPM [https://www.ethpm.com/] lookups.

Raises MainnetUndefined if the mainnet network is not defined.

Internal Methods

	
brownie.network.web3._resolve_address(address)

	Used internally for standardizing address inputs. If address is a string containing a . Brownie will attempt to resolve an ENS domain name [https://ens.domains/] address. Otherwise, returns the result of convert.to_address.

Project API

The project package contains methods for initializing, loading and compiling Brownie projects, and container classes to hold the data.

When Brownie is loaded from within a project folder, that project is automatically loaded and the ContractContainer objects are added to the __main__ namespace. Unless you are working with more than one project at the same time, there is likely no need to directly interact with the top-level Project object or any of the methods within this package.

Only the project.main module contains methods that directly interact with the filesystem.

brownie.project.main

The main module contains the high-level methods and classes used to create, load, and close projects. All of these methods are available directly from brownie.project.

Project

	
class brownie.project.main.Project

	Top level container that holds all objects related to a Brownie project.

Project Methods

	
classmethod Project.load() → None

	Collects project source files, compiles new or updated contracts, instantiates ContractContainer objects, and populates the namespace.

Projects are typically loaded via project.load, but if you have a Project object that was previously closed you can reload it using this method.

	
classmethod Project.load_config() → None

	Updates the configuration settings from the brownie-config.yaml file within this project’s root folder.

	
classmethod Project.close(raises: bool = True) → None

	Removes this object and the related ContractContainer objects from the namespace.

>>> from brownie.project import TokenProject
>>> TokenProject.close()
>>> TokenProject
NameError: name 'TokenProject' is not defined

	
classmethod Project.dict()

	Returns a dictionary of ContractContainer objects.

>>> from brownie.project import TokenProject
>>> TokenProject.dict()
{
 'Token': [],
 'SafeMath': []
}

TempProject

	
class brownie.project.main.TempProject

	Simplified version of Project, used to hold contracts that are compiled via project.compile_source. Instances of this class are not included in the list of active projects or automatically placed anywhere within the namespace.

Module Methods

	
main.check_for_project(path: Union[str, 'Path']) → Optional[Path]

	Checks for an existing Brownie project within a folder and it’s parent folders, and returns the base path to the project as a Path object. Returns None if no project is found.

Accepts a path as a str or a Path object.

>>> from brownie import project
>>> Path('.').resolve()
PosixPath('/my_projects/token/build/contracts')
>>> project.check_for_project('.')
PosixPath('/my_projects/token')

	
main.get_loaded_projects() → List

	Returns a list of currently loaded Project objects.

>>> from brownie import project
>>> project.get_loaded_projects()
[<Project object 'TokenProject'>, <Project object 'OtherProject'>]

	
main.new(project_path=".", ignore_subfolder=False)

	Initializes a new project at the given path. If the folder does not exist, it will be created.

Returns the path to the project as a string.

>>> from brownie import project
>>> project.new('/my_projects/new_project')
'/my_projects/new_project'

	
main.from_brownie_mix(project_name, project_path=None, ignore_subfolder=False)

	Initializes a new project via a template. Templates are downloaded from the Brownie Mix github repo [https://github.com/brownie-mix].

If no path is given, the project will be initialized in a subfolder of the same name.

Returns the path to the project as a string.

>>> from brownie import project
>>> project.from_brownie_mix('token')
Downloading from https://github.com/brownie-mix/token-mix/archive/master.zip...
'my_projects/token'

	
main.from_ethpm(uri):

	Generates a TempProject from an ethPM package.

	uri: ethPM manifest URI. Format can be ERC1319 or IPFS.

	
main.load(project_path=None, name=None)

	Loads a Brownie project and instantiates various related objects.

	project_path: Path to the project. If None, attempts to find one using check_for_project('.').

	name: Name to assign to the project. If None, the name is generated from the name of the project folder.

Returns a Project object. The same object is also available from within the project module namespce.

>>> from brownie import project
>>> project.load('/my_projects/token')
[<Project object 'TokenProject'>]
>>> project.TokenProject
<Project object 'TokenProject'>
>>> project.TokenProject.Token
<ContractContainer object 'Token'>

	
main.compile_source(source, solc_version=None, optimize=True, runs=200, evm_version=None)

	Compiles the given source code string and returns a TempProject object.

If Vyper source code is given, the contract name will be Vyper.

>>> from brownie import compile_source
>>> container = compile_source('''pragma solidity 0.4.25;

contract SimpleTest {

 string public name;

 constructor (string _name) public {
 name = _name;
 }
}'''
>>>
>>> container
<TempProject object>
>>> container.SimpleTest
<ContractContainer object 'SimpleTest'>

brownie.project.build

The build module contains classes and methods used internally by Brownie to interact with files in a project’s build/contracts folder.

Build

	
class brownie.project.build.Build

	Container that stores and manipulates build data loaded from the build/contracts/ files of a specific project. It is instantiated automatically when a project is opened, and available within the Project object as Project._build.

>>> from brownie.project import TokenProject
>>> TokenProject._build
<brownie.project.build.Build object at 0x7fb74cb1b2b0>

Build Methods

	
classmethod Build.get(contract_name)

	Returns build data for the given contract name.

>>> from brownie.project import build
>>> build.get('Token')
{...}

	
classmethod Build.items(path=None)

	Provides an list of tuples in the format ('contract_name', build_json), similar to calling dict.items. If a path is given, only contracts derived from that source file are returned.

>>> from brownie.project import build
>>> for name, data in build.items():
... print(name)
Token
SafeMath

	
classmethod Build.contains(contract_name)

	Checks if a contract with the given name is in the currently loaded build data.

>>> from brownie.project import build
>>> build.contains('Token')
True

	
classmethod Build.get_dependents(contract_name)

	Returns a list of contracts that inherit or link to the given contract name. Used by the compiler when determining which contracts to recompile based on a changed source file.

>>> from brownie.project import build
>>> build.get_dependents('Token')
['SafeMath']

	
classmethod Build.expand_build_offsets(build_json)

	Given a build json as a dict, expands the minified offsets to match the original source code.

Build Internal Methods

	
classmethod Build._add(build_json)

	Adds a contract’s build data to the container.

	
classmethod Build._remove(contract_name)

	Removes a contract’s build data from the container.

	
classmethod Build._generate_revert_map(pcMap)

	Adds a contract’s dev revert strings to the revert map and it’s pcMap. Called internally when adding a new contract.

The revert map is dict of tuples, where each key is a program counter that contains a REVERT or INVALID operation for a contract in the active project. When a transaction reverts, the dev revert string can be determined by looking up the final program counter in this mapping.

Each value is a 5 item tuple of: ("path/to/source", (start, stop), "function name", "dev: revert string", self._source)

When two contracts have differing values for the same program counter, the value in the revert map is set to False. If a transaction reverts with this pc, the entire trace must be queried to determine which contract reverted and get the dev string from it’s pcMap.

Internal Methods

The following methods exist outside the scope of individually loaded projects.

	
build._get_dev_revert(pc)

	Given the program counter from a stack trace that caused a transaction to revert, returns the commented dev string (if any). Used by TransactionReceipt.

>>> from brownie.project import build
>>> build.get_dev_revert(1847)
"dev: zero value"

	
build._get_error_source_from_pc(pc)

	Given the program counter from a stack trace that caused a transaction to revert, returns the highlighted relevent source code and the name of the method that reverted.

Used by TransactionReceipt when generating a VirtualMachineError.

brownie.project.compiler

The compiler module contains methods for compiling contracts, and formatting the compiled data. This module is used internally whenever a Brownie project is loaded.

In most cases you will not need to call methods in this module directly. Instead you should use project.load to compile your project initially and project.compile_source for adding individual, temporary contracts. Along with compiling, these methods also add the returned data to Project._build and return ContractContainer objects.

Module Methods

	
compiler.set_solc_version(version)

	Sets the solc version. If the requested version is not available it will be installed.

>>> from brownie.project import compiler
>>> compiler.set_solc_version("0.4.25")
Using solc version v0.4.25

	
compiler.install_solc(*versions)

	Installs one or more versions of solc.

>>> from brownie.project import compiler
>>> compiler.install_solc("0.4.25", "0.5.10")

	
compiler.compile_and_format(contract_sources, solc_version=None, optimize=True, runs=200, evm_version=None, minify=False, silent=True, allow_paths=None)

	Given a dict in the format {'path': "source code"}, compiles the contracts and returns the formatted build data.

	contract_sources: dict in the format {'path': "source code"}

	solc_version: solc version to compile with. If None, each contract is compiled with the latest installed version that matches the pragma.

	optimize: Toggle compiler optimization

	runs: Number of compiler optimization runs

	evm_version: EVM version to target. If None the compiler default is used.

	minify: Should contract sources be minified?

	silent: Toggle console verbosity

	allow_paths: Import path, passed to solc as an additional path that contract files may be imported from

Calling this method is roughly equivalent to the following:

>>> from brownie.project import compiler

>>> input_json = compiler.generate_input_json(contract_sources)
>>> output_json = compiler.compile_from_input_json(input_json)
>>> build_json = compiler.generate_build_json(input_json, output_json)

	
compiler.find_solc_versions(contract_sources, install_needed=False, install_latest=False, silent=True)

	Analyzes contract pragmas and determines which solc version(s) to use.

	contract_sources: dict in the format {'path': "source code"}

	install_needed: if True, solc is installed when no installed version matches a contract pragma

	install_latest: if True, solc is installed when a newer version is available than the installed one

	silent: enables verbose reporting

Returns a dict of {'version': ["path", "path", ..]}.

	
compiler.find_best_solc_version(contract_sources, install_needed=False, install_latest=False, silent=True)

	Analyzes contract pragmas and finds the best version compatible with all sources.

	contract_sources: dict in the format {'path': "source code"}

	install_needed: if True, solc is installed when no installed version matches a contract pragma

	install_latest: if True, solc is installed when a newer version is available than the installed one

	silent: enables verbose reporting

Returns a dict of {'version': ["path", "path", ..]}.

	
compiler.generate_input_json(contract_sources, optimize=True, runs=200, evm_version=None, minify=False, language="Solidity")

	Generates a standard solc input JSON [https://solidity.readthedocs.io/en/latest/using-the-compiler.html#input-description] as a dict.

	
compiler.compile_from_input_json(input_json, silent=True, allow_paths=None)

	Compiles from an input JSON and returns a standard solc output JSON [https://solidity.readthedocs.io/en/latest/using-the-compiler.html#output-description] as a dict.

	
compiler.generate_build_json(input_json, output_json, compiler_data={}, silent=True)

	Formats input and output compiler JSONs and returns a Brownie build JSON dict.

	input_json: Compiler input JSON dict

	output_json: Computer output JSON dict

	compiler_data: Additional compiler data to include

	silent: Toggles console verbosity

brownie.project.ethpm

The ethpm module contains methods for interacting with ethPM manifests and registries. See the The Ethereum Package Manager for more detailed information on how to access this functionality.

Module Methods

	
ethpm.get_manifest(uri)

	Fetches an ethPM manifest and processes it for use with Brownie. A local copy is also stored if the given URI follows the ERC1319 spec.

	uri: URI location of the manifest. Can be IPFS or ERC1319.

	
ethpm.process_manifest(manifest, uri)

	Processes a manifest for use with Brownie.

	manifest: ethPM manifest

	uri: IPFS uri of the package

	
ethpm.get_deployment_addresses(manifest, contract_name, genesis_hash)

	Parses a manifest and returns a list of deployment addresses for the given contract and chain.

	manifest: ethPM manifest

	contract_name: Name of the contract

	genesis_block: Genesis block hash for the chain to return deployments on. If None, the currently active chain will be used.

	
ethpm.get_installed_packages(project_path)

	Returns information on installed ethPM packages within a project.

	project_path: Path to the root folder of the project

Returns:

	[(project name, version), ..] of installed packages

	[(project name, version), ..] of installed-but-modified packages

	
ethpm.install_package(project_path, uri, replace_existing)

	Installs an ethPM package within the project.

	project_path: Path to the root folder of the project

	uri: manifest URI, can be erc1319 or ipfs

	replace_existing: if True, existing files will be overwritten when installing the package

Returns the package name as a string.

	
ethpm.remove_package(project_path, package_name, delete_files)

	Removes an ethPM package from a project.

	project_path: Path to the root folder of the project

	package_name: name of the package

	delete_files: if True, source files related to the package are deleted. Files that are still required by other installed packages will not be deleted.

Returns a boolean indicating if the package was installed.

	
ethpm.create_manifest(project_path, package_config, pin_assets=False, silent=True)

	Creates a manifest from a project, and optionally pins it to IPFS.

	project_path: Path to the root folder of the project

	package_config: Configuration settings for the manifest

	pin_assets: if True, all source files and the manifest will be uploaded onto IPFS via Infura.

Returns: (generated manifest, ipfs uri of manifest)

	
ethpm.verify_manifest(package_name, version, uri)

	Verifies the validity of a package at a given IPFS URI.

	package_name: Package name

	version: Package version

	uri: IPFS uri

Raises InvalidManifest if the manifest is not valid.

	
ethpm.release_package(registry_address, account, package_name, version, uri)

	Creates a new release of a package at an ERC1319 registry.

	registry_address: Address of the registry

	account: Account object used to broadcast the transaction to the registry

	package_name: Name of the package

	version: Package version

	uri: IPFS uri of the package

Returns the TransactionReceipt of the registry call to release the package.

brownie.project.scripts

The scripts module contains methods for comparing, importing and executing python scripts related to a project.

	
scripts.run(script_path, method_name="main", args=None, kwargs=None, project=None)

	Imports a project script, runs a method in it and returns the result.

script_path: path of script to import
method_name: name of method in the script to run
args: method args
kwargs: method kwargs
project: Project object that should available for import into the script namespace

>>> from brownie import run
>>> run('token')

Running 'scripts.token.main'...

Transaction sent: 0xeb9dfb6d97e8647f824a3031bc22a3e523d03e2b94674c0a8ee9b3ff601f967b
Token.constructor confirmed - block: 1 gas used: 627391 (100.00%)
Token deployed at: 0x8dc446C44C821F27B333C1357990821E07189E35

Internal Methods

	
scripts._get_ast_hash(path)

	Returns a hash based on the AST of a script and any scripts that it imports. Used to determine if a project script has been altered since it was last run.

path: path of the script

>>> from brownie.project.scripts import get_ast_hash
>>> get_ast_hash('scripts/deploy.py')
'12b57e7bb8d88e3f289e27ba29e5cc28eb110e45'

brownie.project.sources

The sources module contains classes and methods to access project source code files and information about them.

Sources

	
class brownie.project.sources.Sources

	The Sources object provides access to the contracts/ and interfaces/ files for a specific project. It is instantiated automatically when a project is loaded, and available within the Project object as Project._sources.

>>> from brownie.project import TokenProject
>>> TokenProject._sources
<brownie.project.sources.Sources object at 0x7fb74cb1bb70>

	
classmethod Sources.get(name)

	Returns the source code file for the given name. name can be a path or a contract name.

>>> from brownie.project import sources
>>> sources.get('SafeMath')
"pragma solidity ^0.5.0; ..."

	
classmethod Sources.get_path_list()

	Returns a sorted list of contract source paths for the project.

>>> from brownie.project import sources
>>> sources.get_path_list()
['contracts/SafeMath.sol', 'contracts/Token.sol', 'interfaces/IToken.sol']

	
classmethod Sources.get_contract_list()

	Returns a sorted list of contract names for the project.

>>> from brownie.project import sources
>>> sources.get_contract_list()
['SafeMath', 'Token']

	
classmethod Sources.get_interface_list()

	Returns a sorted list of interface names for the project.

>>> from brownie.project import sources
>>> sources.get_interface_list()
['IToken']

	
classmethod Sources.get_interface_hashes()

	Returns a dict of interface hashes in the form of {'interfaceName': "hash"}

	
classmethod Sources.get_interface_sources()

	Returns a dict of interfaces sources in the form {'path/to/interface': "source code"}

	
classmethod Sources.get_source_path(contract_name)

	Returns the path to the file where a contract or interface is located.

>>> from brownie.project import sources
>>> sources.get_source_path('Token')
'contracts/Token.sol'

	
classmethod Sources.expand_offset(contract_name, offset)

	Converts a minified offset to one that matches the current source code.

>>> from brownie.project import sources
>>> sources.expand_offset("Token", [1258, 1466])
(2344, 2839)

Module Methods

	
sources.minify(source, language="Solidity")

	Given contract source as a string, returns a minified version and an offset map used internally to translate minified offsets to the original ones.

>>> from brownie.project import sources
>>> token_source = sources.get('Token')
>>> source.minify(token_source)
"pragma solidity^0.5.0;\nimport"./SafeMath.sol";\ncontract Token{\nusing SafeMath for uint256; ..."

	
sources.is_inside_offset(inner, outer)

	Returns a boolean indicating if the first offset is contained completely within the second offset.

>>> from brownie.project import sources
>>> sources.is_inside_offset([100, 200], [100, 250])
True

	
sources.get_hash(source, contract_name, minified, language)

	Returns a sha1 hash generated from a contract’s source code.

	
sources.get_contracts(full_source)

	Given a Solidity contract source as a string, returns a dict of source code for individual contracts.

>>> from brownie.project.sources import get_contracts
>>> get_contracts('''
... pragma solidity 0.5.0;
...
... contract Foo {
... function bar() external returns (bool) {
... return true;
... }
... }
...
... library Bar {
... function baz(uint a, uint b) external pure returns (uint) {
... return a + b;
... }
... }''')
{
 'Foo': 'contract Foo {\n function bar() external returns (bool) {\n return true;\n }\n}',
 'Bar': 'library Bar {\n function baz(uint a, uint b) external pure returns (uint) {\n return a + b;\n }\n}'
}

	
sources.get_pragma_spec(source, path=None)

	Returns an NpmSpec [https://python-semanticversion.readthedocs.io/en/latest/#npm-based-ranges] object representing the first pragma statement found within a source file.

Raises PragmaError on failure. If path is not None, it will be included in the error string.

Test API

The test package contains classes and methods for running tests and evaluating test coverage.

This functionality is typically accessed via pytest [https://docs.pytest.org/en/latest/]. See Writing Unit Tests.

brownie.test.fixtures

The fixtures module contains custom fixtures provided by the Brownie Pytest plugin.

Pytest Fixtures

Note

These fixtures are only available when pytest is run from inside a Brownie project folder.

Session Fixtures

These fixtures provide access to objects related to the project being tested.

	
fixtures.accounts

	Session scope. Yields an instantiated Accounts container for the active project.

	
fixtures.a

	Session scope. Short form of the accounts fixture.

	
fixtures.history

	Session scope. Yields an instantiated TxHistory object for the active project.

	
fixtures.rpc

	Session scope. Yields an instantiated Rpc object.

	
fixtures.state_machine

	Session scope. Yields the state_machine method, used to launc rule-based state machine tests.

	
fixtures.web3

	Session scope. Yields an instantiated Web3 object.

Isolation Fixtures

These fixtures are used to effectively isolate tests. If included on every test within a module, that module may now be skipped via the --update flag when none of the related files have changed since it was last run.

	
fixtures.module_isolation

	Module scope. When used, this fixture is always applied before any other module-scoped fixtures.

Resets the local environment before starting the first test and again after completing the final test.

	
fixtures.fn_isolation(module_isolation)

	Function scope. When used, this fixture is always applied before any other function-scoped fixtures.

Applies the module_isolation fixture, and additionally takes a snapshot prior to running each test which is then reverted to after the test completes. The snapshot is taken immediately after any module-scoped fixtures are applied, and before all function-scoped ones.

Coverage Fixtures

These fixtures alter the behaviour of tests when coverage evaluation is active.

	
fixtures.no_call_coverage

	Function scope. Coverage evaluation will not be performed on called contact methods during this test.

	
fixtures.skip_coverage

	Function scope. If coverage evaluation is active, this test will be skipped.

brownie.test.strategies

The strategies module contains the strategy method, and related internal methods for generating Hypothesis search strategies [https://hypothesis.readthedocs.io/en/latest/details.html#defining-strategies].

	
strategies.strategy(type_str, **kwargs)

	Returns a Hypothesis SearchStrategy based on the value of type_str. Depending on the type of strategy, different kwargs are available.

See the Strategies section for information on how to use this method.

brownie.test.stateful

The stateful module contains the state_machine method, and related internal classes and methods for performing stateful testing [https://hypothesis.readthedocs.io/en/latest/stateful.html].

	
stateful.state_machine(state_machine_class, *args, settings=None, **kwargs)

	Executes a stateful test.

	state_machine_class: A state machine class to be used in the test. Be sure to pass the class itself, not an instance of the class.

	*args: Any arguments given here will be passed to the state machine’s __init__ method.

	settings: An optional dictionary of Hypothesis settings that will replace the defaults for this test only.

See the Stateful Testing section for information on how to use this method.

brownie.test.plugin

The plugin module is the entry point for the Brownie pytest plugin. It contains two pytest hook point methods that are used for setting up the plugin. The majority of the plugin functionality is handled by a plugin manager which is instantiated in the pytest_configure method.

brownie.test.manager

The manager module contains Brownie classes used internally to manage the Brownie pytest plugin.

Plugin Managers

One of these classes is instantiated in the pytest_configure method of brownie.test.plugin. Which is used depends on whether or not pytest-xdist [https://github.com/pytest-dev/pytest-xdist] is active.

	
class manager.base.PytestBrownieBase

	Base class that is inherited by all Brownie plugin managers.

	
class manager.runner.PytestBrownieRunner

	Runner plugin manager, used when xdist is not active.

	
class manager.runner.PytestBrownieXdistRunner

	xdist runner plugin manager. Inherits from PytestBrownieRunner.

	
class manager.master.PytestBrownieMaster

	xdist master plugin manager.

RevertContextManager

The RevertContextManager closely mimics the behaviour of pytest.raises [https://docs.pytest.org/en/latest/reference.html#pytest.raises].

	
class brownie.test.plugin.RevertContextManager(revert_msg=None)

	Context manager used to handle VirtualMachineError exceptions. Raises AssertionError if no transaction has reverted when the context closes.

	revert_msg: Optional. Raises an AssertionError if the transaction does not revert with this error string.

This class is available as brownie.reverts when pytest is active.

	1
2
3
4
5
6

	import brownie

def test_transfer_reverts(Token, accounts):
 token = accounts[0].deploy(Token, "Test Token", "TST", 18, 1e23)
 with brownie.reverts():
 token.transfer(account[2], 1e24, {'from': accounts[1]})

brownie.test.output

The output module contains methods for formatting and displaying test output.

Internal Methods

	
output._save_coverage_report(build, coverage_eval, report_path)

	Generates and saves a test coverage report for viewing in the GUI.

	build: Project Build object

	coverage_eval: Coverage evaluation dict

	report_path: Path to save to. If the path is a folder, the report is saved as coverage.json.

	
output._print_gas_profile()

	Formats and prints a gas profile report.

	
output._print_coverage_totals(build, coverage_eval)

	Formats and prints a coverage evaluation report.

	build: Project Build object

	coverage_eval: Coverage evaluation dict

	
output._get_totals(build, coverage_eval)

	Generates an aggregated coverage evaluation dict that holds counts and totals for each contract function.

	build: Project Build object

	coverage_eval: Coverage evaluation dict

Returns:

{ "ContractName": {
 "statements": {
 "path/to/file": {
 "ContractName.functionName": (count, total), ..
 }, ..
 },
 "branches" {
 "path/to/file": {
 "ContractName.functionName": (true_count, false_count, total), ..
 }, ..
 }
}

	
output._split_by_fn(build, coverage_eval)

	Splits a coverage eval dict so that coverage indexes are stored by contract function. The returned dict is no longer compatible with other methods in this module.

	build: Project Build object

	coverage_eval: Coverage evaluation dict

	Original format: {"path/to/file": [index, ..], .. }

	Returned format: {"path/to/file": { "ContractName.functionName": [index, ..], .. }

	
output._get_highlights(build, coverage_eval)

	Returns a highlight map formatted for display in the GUI.

	build: Project Build object

	coverage_eval: Coverage evaluation dict

Returns:

{
 "statements": {
 "ContractName": {"path/to/file": [start, stop, color, msg], .. },
 },
 "branches": {
 "ContractName": {"path/to/file": [start, stop, color, msg], .. },
 }
}

See Report JSON Format for more info on the return format.

brownie.test.coverage

The coverage module is used storing and accessing coverage evaluation data.

Module Methods

	
coverage.get_coverage_eval()

	Returns all coverage data, active and cached.

	
coverage.get_merged_coverage_eval()

	Merges and returns all active coverage data as a single dict.

	
coverage.clear()

	Clears all coverage eval data.

Internal Methods

	
coverage.add_transaction(txhash, coverage_eval)

	Adds coverage eval data.

	
coverage.add_cached_transaction(txhash, coverage_eval)

	Adds coverage data to the cache.

	
coverage.check_cached(txhash, active=True)

	Checks if a transaction hash is present within the cache, and if yes includes it in the active data.

	
coverage.get_active_txlist()

	Returns a list of coverage hashes that are currently marked as active.

	
coverage.clear_active_txlist()

	Clears the active coverage hash list.

Utils API

The utils package contains utility classes and methods that are used throughout Brownie.

brownie.utils.color

The color module contains the Color class, used for to apply color and formatting to text before printing.

Color

	
class brownie.utils.color.Color

	The Color class is used to apply color and formatting to text before displaying it to the user. It is primarily used within the console. An instance of Color is available at brownie.utils.color:

>>> from brownie.utils import color
>>> color
<brownie.utils.color.Color object at 0x7fa9ec851ba8>

Color is designed for use in formatted string literals [https://docs.python.org/3.6/reference/lexical_analysis.html#f-strings]. When called it returns an ANSI escape code [https://en.wikipedia.org/wiki/ANSI_escape_code#Colors] for the given color:

>>> color('red')
'\x1b[0;31m'

You can also prefix any color with “bright” or “dark”:

>>> color('bright red')
'\x1b[0;1;31m'
>>> color('dark red')
'\x1b[0;2;31m'

Calling it with no values or Converting to a string returns the base color code:

>>> color()
'\x1b[0;m'
>>> str(color)
'\x1b[0;m'

Color Methods

	
classmethod Color.pretty_dict(value, _indent=0) → str

	Given a dict, returns a colored and formatted string suitable for printing.

	value: dict to format

	_indent: used for recursive internal calls, should always be left as 0

	
classmethod Color.pretty_sequence(value, _indent=0) → str

	Given a sequence (list, tuple, set), returns a colored and formatted string suitable for printing.

	value: Sequence to format

	_indent: used for recursive internal calls, should always be left as 0

	
classmethod Color.format_tb(exc, filename=None, start=None, stop=None) → str

	Given a raised Exception, returns a colored and formatted string suitable for printing.

	exc: An Exception object

	filename: An optional path as a string. If given, only lines in the traceback related to this filename will be displayed.

	start: Optional. If given, the displayed traceback not include items prior to this index.

	stop: Optional. If given, the displayed traceback not include items beyond this index.

	
classmethod Color.format_syntaxerror(exc) → str

	Given a raised SyntaxError, returns a colored and formatted string suitable for printing.

	exc: A SyntaxError object.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (StateMachine class method)

 	_add() (Build class method)

 	_add_contract() (brownie.network.state method)

 	_copy() (ConfigDict class method)

 	_decode_logs() (brownie.network.event method)

 	_decode_trace() (brownie.network.event method)

 	_find_contract() (brownie.network.state method)

 	_generate_revert_map() (Build class method)

 	_get_ast_hash() (scripts method)

 	_get_current_dependencies() (brownie.network.state method)

 	_get_dev_revert() (build method)

 	_get_error_source_from_pc() (build method)

 	_get_highlights() (output method)

 	_get_topics() (brownie.network.event method)

 	_get_totals() (output method)

 	_internal_revert() (Rpc class method)

 	_internal_snap() (Rpc class method)

 	
 	_lock() (ConfigDict class method)

 	_mainnet (Web3 attribute)

 	_print_coverage_totals() (output method)

 	_print_gas_profile() (output method)

 	_remove() (Build class method)

 	_remove_contract() (brownie.network.state method)

 	_reset() (Accounts class method)

 	(ContractContainer class method)

 	(TxHistory class method)

 	_resolve_address() (brownie.network.web3 method)

 	_revert() (Accounts class method)

 	(ContractContainer class method)

 	(TxHistory class method)

 	_reverted (Contract attribute)

 	_save_coverage_report() (output method)

 	_split_by_fn() (output method)

 	_unlock() (ConfigDict class method)

A

 	
 	a

 	(fixtures attribute)

 	abi (ContractCall attribute)

 	(ContractContainer attribute)

 	(ContractTx attribute)

 	accounts

 	(fixtures attribute)

 	
 	add() (Accounts class method)

 	add_cached_transaction() (coverage method)

 	add_transaction() (coverage method)

 	address (Account attribute)

 	at() (Accounts class method)

 	(ContractContainer class method)

 	attach() (Rpc class method)

B

 	
 	balance() (Account class method)

 	(Contract class method)

 	(PublicKeyAccount class method)

 	block_number (TransactionReceipt attribute)

 	brownie._config.ConfigDict (built-in class)

 	brownie._singleton._Singleton (built-in class)

 	brownie.convert.datatypes.EthAddress (built-in class)

 	brownie.convert.datatypes.Fixed (built-in class)

 	brownie.convert.datatypes.HexString (built-in class)

 	brownie.convert.datatypes.ReturnValue (built-in class)

 	brownie.convert.datatypes.Wei (built-in class)

 	brownie.exceptions.CompilerError

 	brownie.exceptions.ContractExists

 	brownie.exceptions.ContractNotFound

 	brownie.exceptions.EventLookupError

 	brownie.exceptions.IncompatibleEVMVersion

 	brownie.exceptions.IncompatibleSolcVersion

 	brownie.exceptions.InvalidManifest

 	brownie.exceptions.MainnetUndefined

 	brownie.exceptions.NamespaceCollision

 	brownie.exceptions.PragmaError

 	brownie.exceptions.ProjectAlreadyLoaded

 	brownie.exceptions.ProjectNotFound

 	brownie.exceptions.RPCConnectionError

 	brownie.exceptions.RPCProcessError

 	brownie.exceptions.RPCRequestError

 	brownie.exceptions.UndeployedLibrary

 	brownie.exceptions.UnknownAccount

 	brownie.exceptions.UnsetENSName

 	
 	brownie.exceptions.UnsupportedLanguage

 	brownie.exceptions.VirtualMachineError

 	brownie.network.account.Account (built-in class)

 	brownie.network.account.Accounts (built-in class)

 	brownie.network.account.LocalAccount (built-in class)

 	brownie.network.account.PublicKeyAccount (built-in class)

 	brownie.network.alert.Alert (built-in class)

 	brownie.network.contract.Contract (built-in class)

 	brownie.network.contract.ContractCall (built-in class)

 	brownie.network.contract.ContractContainer (built-in class)

 	brownie.network.contract.ContractTx (built-in class)

 	brownie.network.contract.OverloadedMethod (built-in class)

 	brownie.network.contract.ProjectContract (built-in class)

 	brownie.network.event._EventItem (built-in class)

 	brownie.network.event.EventDict (built-in class)

 	brownie.network.rpc._notify_registry (built-in class)

 	brownie.network.rpc._revert_register (built-in class)

 	brownie.network.rpc.Rpc (built-in class)

 	brownie.network.state.TxHistory (built-in class)

 	brownie.network.transaction.TransactionReceipt (built-in class)

 	brownie.network.web3.Web3 (built-in class)

 	brownie.project.build.Build (built-in class)

 	brownie.project.main.Project (built-in class)

 	brownie.project.main.TempProject (built-in class)

 	brownie.project.sources.Sources (built-in class)

 	brownie.test.plugin.RevertContextManager (built-in class)

 	brownie.utils.color.Color (built-in class)

 	bytecode (Contract attribute)

 	(ContractContainer attribute)

C

 	
 	call() (ContractTx class method)

 	call_trace() (TransactionReceipt class method)

 	chain_uri() (Web3 class method)

 	check_cached() (coverage method)

 	check_for_project() (main method)

 	clear() (Accounts class method)

 	(coverage method)

 	clear_active_txlist() (coverage method)

 	close() (Project class method)

 	compile_and_format() (compiler method)

 	
 	compile_from_input_json() (compiler method)

 	compile_source() (main method)

 	compiler

 	connect() (main method)

 	(Web3 class method)

 	contains() (Build class method)

 	contract_address (TransactionReceipt attribute)

 	contract_name (TransactionReceipt attribute)

 	copy() (TxHistory class method)

 	count() (EventDict class method)

 	create_manifest() (ethpm method)

D

 	
 	deadline

 	decode_output() (ContractTx class method)

 	deploy() (Account class method)

 	(ContractContainer class method)

 	
 	deployment_networks (settings attribute)

 	dict() (Project class method)

 	(ReturnValue class method)

 	disconnect() (main method)

 	(Web3 class method)

E

 	
 	encode_input() (ContractTx class method)

 	error() (TransactionReceipt class method)

 	estimate_gas() (Account class method)

 	events (TransactionReceipt attribute)

 	
 	evm_compatible() (Rpc class method)

 	evm_version() (Rpc class method)

 	expand_build_offsets() (Build class method)

 	expand_offset() (Sources class method)

F

 	
 	find_best_solc_version() (compiler method)

 	find_solc_versions() (compiler method)

 	fn_isolation

 	fn_isolation() (fixtures method)

 	fn_name (TransactionReceipt attribute)

 	format_event() (normalize method)

 	
 	format_input() (normalize method)

 	format_output() (normalize method)

 	format_syntaxerror() (Color class method)

 	format_tb() (Color class method)

 	from_brownie_mix() (main method)

 	from_sender() (TxHistory class method)

G

 	
 	gas_limit (TransactionReceipt attribute)

 	gas_limit() (main method)

 	gas_price (TransactionReceipt attribute)

 	gas_price() (main method)

 	gas_profile (TxHistory attribute)

 	gas_used (TransactionReceipt attribute)

 	generate_build_json() (compiler method)

 	generate_input_json() (compiler method)

 	genesis_hash() (Web3 class method)

 	get() (Build class method)

 	(Sources class method)

 	get_active_txlist() (coverage method)

 	get_contract_list() (Sources class method)

 	get_contracts() (sources method)

 	get_coverage_eval() (coverage method)

 	
 	get_dependents() (Build class method)

 	get_deployment_addresses() (ethpm method)

 	get_hash() (sources method)

 	get_installed_packages() (ethpm method)

 	get_int_bounds() (utils method)

 	get_interface_hashes() (Sources class method)

 	get_interface_list() (Sources class method)

 	get_interface_sources() (Sources class method)

 	get_loaded_projects() (main method)

 	get_manifest() (ethpm method)

 	get_merged_coverage_eval() (coverage method)

 	get_method() (ContractContainer class method)

 	get_path_list() (Sources class method)

 	get_pragma_spec() (sources method)

 	get_source_path() (Sources class method)

 	get_type_strings() (utils method)

H

 	
 	history

 	(fixtures attribute)

I

 	
 	include_dependencies (settings attribute)

 	info() (TransactionReceipt class method)

 	input (TransactionReceipt attribute)

 	install_package() (ethpm method)

 	install_solc() (compiler method)

 	internal_transfers (TransactionReceipt attribute)

 	is_active() (Rpc class method)

 	
 	is_alive() (Alert class method)

 	is_child() (Rpc class method)

 	is_connected() (main method)

 	is_inside_offset() (sources method)

 	items() (_EventItem class method)

 	(Build class method)

 	(EventDict class method)

 	(ReturnValue class method)

K

 	
 	keys() (_EventItem class method)

 	(EventDict class method)

 	(ReturnValue class method)

 	
 	kill() (Rpc class method)

L

 	
 	launch() (Rpc class method)

 	load() (Accounts class method)

 	(Project class method)

 	(main method)

 	
 	load_config() (Project class method)

 	logs (TransactionReceipt attribute)

M

 	
 	manager.base.PytestBrownieBase (built-in class)

 	manager.master.PytestBrownieMaster (built-in class)

 	manager.runner.PytestBrownieRunner (built-in class)

 	manager.runner.PytestBrownieXdistRunner (built-in class)

 	max_examples

 	
 	meta

 	mine() (Rpc class method)

 	minify() (sources method)

 	modified_state (TransactionReceipt attribute)

 	module_isolation

 	(fixtures attribute)

N

 	
 	name (_EventItem attribute)

 	network

 	networks (network attribute)

 	new() (alert method)

 	(main method)

 	
 	new_contracts (TransactionReceipt attribute)

 	no_call_coverage

 	(fixtures attribute)

 	nonce (Account attribute)

 	(PublicKeyAccount attribute)

 	(TransactionReceipt attribute)

O

 	
 	of_address() (TxHistory class method)

P

 	
 	package_name

 	pos (_EventItem attribute)

 	pretty_dict() (Color class method)

 	pretty_sequence() (Color class method)

 	
 	private_key (LocalAccount attribute)

 	process_manifest() (ethpm method)

 	public_key (LocalAccount attribute)

 	pytest

R

 	
 	receiver (TransactionReceipt attribute)

 	release_package() (ethpm method)

 	remove() (Accounts class method)

 	(ContractContainer class method)

 	remove_package() (ethpm method)

 	reset() (Rpc class method)

 	
 	return_value (TransactionReceipt attribute)

 	revert() (Rpc class method)

 	revert_msg (TransactionReceipt attribute)

 	rpc

 	(fixtures attribute)

 	run() (scripts method)

S

 	
 	save() (LocalAccount class method)

 	sender (TransactionReceipt attribute)

 	set_solc_version() (compiler method)

 	settings (network attribute)

 	setup() (StateMachine class method)

 	show() (alert method)

 	show_active() (main method)

 	signature (ContractCall attribute)

 	(ContractTx attribute)

 	signatures (ContractContainer attribute)

 	skip_coverage

 	(fixtures attribute)

 	
 	sleep() (Rpc class method)

 	snapshot() (Rpc class method)

 	solc (compiler attribute)

 	source() (TransactionReceipt class method)

 	state_machine

 	(fixtures attribute)

 	state_machine() (brownie.test.stateful method)

 	(stateful method)

 	stateful_step_count

 	status (TransactionReceipt attribute)

 	stop() (Alert class method)

 	stop_all() (alert method)

 	strategy() (strategies method)

T

 	
 	teardown() (StateMachine class method)

 	teardown_final() (StateMachine class method)

 	test_rpc (network.networks attribute)

 	time() (Rpc class method)

 	to_address() (brownie.convert method)

 	to_bool() (brownie.convert method)

 	to_bytes() (brownie.convert method)

 	to_decimal() (brownie.convert method)

 	to_int() (brownie.convert method)

 	to_receiver() (TxHistory class method)

 	
 	to_string() (brownie.convert method)

 	to_uint() (brownie.convert method)

 	topics (ContractContainer attribute)

 	trace (TransactionReceipt attribute)

 	traceback() (TransactionReceipt class method)

 	transact() (ContractCall class method)

 	transfer() (Account class method)

 	tx (Contract attribute)

 	txid (TransactionReceipt attribute)

 	txindex (TransactionReceipt attribute)

V

 	
 	value (TransactionReceipt attribute)

 	values() (_EventItem class method)

 	(EventDict class method)

 	
 	verify_manifest() (ethpm method)

 	version

W

 	
 	wait() (Alert class method)

 	
 	web3

 	(fixtures attribute)

 _static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Brownie

 		
 Overview

 		
 Features

 		
 Quickstart

 		
 Creating a New Project

 		
 Exploring the Project

 		
 Compiling your Contracts

 		
 Core Functionality

 		
 Accounts

 		
 Contracts

 		
 Transactions

 		
 Writing Scripts

 		
 Testing your Project

 		
 Fixtures

 		
 Handling Reverted Transactions

 		
 Isolating Tests

 		
 Installing Brownie

 		
 Dependencies

 		
 Tkinter

 		
 Creating a New Project

 		
 Creating an Empty Project

 		
 Creating a Project from a Template

 		
 The Continuous Integration Template

 		
 Structure of a Project

 		
 contracts/

 		
 interfaces/

 		
 scripts/

 		
 tests/

 		
 brownie-config.yaml

 		
 Compiling Contracts

 		
 Supported Languages

 		
 Interfaces

 		
 Compiler Settings

 		
 Setting the Compiler Version

 		
 The EVM Version

 		
 Compiler Optimization

 		
 Source Minification

 		
 Installing the Compiler

 		
 Interacting with your Contracts

 		
 Using the Console

 		
 Writing Scripts

 		
 Layout of a Script

 		
 Running Scripts

 		
 Examples

 		
 Writing Tests

 		
 The Brownie GUI

 		
 Getting Started

 		
 Working with Opcodes

 		
 Mapping Opcodes to Source

 		
 Jump Instructions

 		
 Miscellaneous

 		
 Viewing Reports

 		
 Report JSON Format

 		
 Working with Accounts

 		
 Working with Contracts

 		
 Deploying Contracts

 		
 Unlinked Libraries

 		
 Interacting with your Contracts

 		
 Transactions

 		
 Calls

 		
 Contracts Outside of your Project

 		
 Inspecting and Debugging Transactions

 		
 Event Data

 		
 Internal Transactions and Deployments

 		
 Debugging Failed Transactions

 		
 Inspecting the Trace

 		
 The Trace Object

 		
 Call Traces

 		
 Accessing Transaction History

 		
 Unconfirmed Transactions

 		
 The Local Test Environment

 		
 Mining

 		
 Time

 		
 Snapshots

 		
 Data Types

 		
 Wei

 		
 Fixed

 		
 Writing Unit Tests

 		
 Getting Started

 		
 Test File Structure

 		
 Writing your First Test

 		
 Fixtures

 		
 Brownie Pytest Fixtures

 		
 Fixture Scope

 		
 Isolation Fixtures

 		
 Defining a Shared Initial State

 		
 Handling Reverted Transactions

 		
 Developer Revert Comments

 		
 Parametrizing Tests

 		
 Running Tests

 		
 Only Running Updated Tests

 		
 Evaluating Coverage

 		
 Using xdist for Distributed Testing

 		
 Pytest Fixtures Reference

 		
 Session Fixtures

 		
 Contract Fixtures

 		
 Isolation Fixtures

 		
 Coverage Fixtures

 		
 Property-Based Testing

 		
 What is Property-Based Testing?

 		
 Writing Tests

 		
 Strategies

 		
 Type Strategies

 		
 Sequence Strategies

 		
 Other Strategies

 		
 Settings

 		
 Available Settings

 		
 Stateful Testing

 		
 Rule-based State Machines

 		
 Rules

 		
 Initializers

 		
 Strategies

 		
 Invariants

 		
 Setup and Teardown

 		
 Test Execution Sequence

 		
 Writing Stateful Tests

 		
 Basic Example

 		
 More Examples

 		
 Running Stateful Tests

 		
 Coverage Evaluation

 		
 Viewing Coverage Data

 		
 How Coverage Evaluation Works

 		
 Improving Performance

 		
 Security Analysis with MythX

 		
 Authentication

 		
 Scanning for Vulnerabilities

 		
 Viewing Analysis Results

 		
 Deployment Basics

 		
 Writing a Deployment Script

 		
 Running your Deployment Script

 		
 Interacting with Deployed Contracts

 		
 Using Non-Local Networks

 		
 Personal Node vs Hosted Node

 		
 Running your Own Node

 		
 Using a Hosted Node

 		
 Network Configuration

 		
 Defining Non-Local Networks

 		
 Setting the Default Network

 		
 Launching and Connecting to Networks

 		
 Using the CLI

 		
 Using brownie.network

 		
 Managing Local Accounts

 		
 Account Management

 		
 Generating a New Account

 		
 Importing from a Private Key

 		
 Importing from a Keystore

 		
 Exporting a Keystore

 		
 Unlocking Accounts

 		
 The Ethereum Package Manager

 		
 Registry URIs

 		
 Working with ethPM Packages

 		
 Installing a Package

 		
 Listing Installed Packages

 		
 Removing a Package

 		
 Unlinking a Package

 		
 Creating and Releasing a Package

 		
 Step 1: Package Configuration Settings

 		
 Step 2: Creating the Manifest

 		
 Step 3: Releasing the Package

 		
 Interacting with Package Deployments

 		
 The Configuration File

 		
 Settings

 		
 The Build Folder

 		
 Compiler Artifacts

 		
 Program Counter Map

 		
 Coverage Map

 		
 Deployment Artifacts

 		
 Test Results and Coverage Data

 		
 Coverage Map Indexes

 		
 Installed ethPM Package Data

 		
 Brownie as a Python Package

 		
 Loading a Project

 		
 Loading Project Config Settings

 		
 Accessing the Network

 		
 Brownie API

 		
 brownie

 		
 brownie

 		
 brownie.exceptions

 		
 brownie._config

 		
 brownie._singleton

 		
 brownie.convert

 		
 brownie.convert.main

 		
 brownie.convert.datatypes

 		
 brownie.convert.normalize

 		
 brownie.convert.utils

 		
 brownie.network

 		
 brownie.network.main

 		
 brownie.network.account

 		
 brownie.network.alert

 		
 brownie.network.contract

 		
 brownie.network.event

 		
 brownie.network.state

 		
 brownie.network.rpc

 		
 brownie.network.transaction

 		
 brownie.network.web3

 		
 brownie.project

 		
 brownie.project.main

 		
 brownie.project.build

 		
 brownie.project.compiler

 		
 brownie.project.ethpm

 		
 brownie.project.scripts

 		
 brownie.project.sources

 		
 brownie.test

 		
 brownie.test.fixtures

 		
 brownie.test.strategies

 		
 brownie.test.stateful

 		
 brownie.test.plugin

 		
 brownie.test.manager

 		
 brownie.test.output

 		
 brownie.test.coverage

 		
 brownie.utils

 		
 brownie.utils.color

_images/gui1.png
(XX Brownie GUI - TokenProject
Console | Scope

Token.sol SafeMath.sol

lpragma solidity 70.5.0;

gimport "./safeMath.sol";
gcontract Token {

g using safeMath for uint256;
g string public symbol;

10 string public name;

11 uint256 public decimals;
12 uint256 public totalSupply;

13

14 mapping(address => uint256) balances;

15 mapping(address => mapping(address => uint256)) allowed;
16

17 event Transfer(address from, address to, uint256 value);
18 event Approval(address owner, address spender, uint256 value);
19

20 constructor(

21 string memory _symbol,

22 string memory _name,

23 uint256 _decimals,

24 uint256 _totalSupply

25)

26 public

27 {

28 symbol = _symbol;

na nama — nama-

Select Report

161

opcode
DUP1
PUSH4
EQ
PUSH2
JUMPI
JUMPDEST
PUSH1
DUP1
REVERT
JUMPDEST
CALLVALUE
DUP1
ISZERO
PUSH2
JUMPI
PUSH1
DUP1
REVERT
JUMPDEST
POP
PUSH2
PUSH2
JUMP
JUMPDEST
PUSH1

_images/gui4.png
Brownie GUI - PrivateProject

e oranches o} SecurityToken

Console

‘ SecurityToken.sol ‘ Modular.sol ‘ Token.sol ‘ SafeMath.sol
241 if (
242
243 &&
244
245)
246 ’*
247 If the call was not made by the issuer or the sender and involves
248 a change in ownership, subtract from the allowed mapping.
249 */
250 require(allowed[_addr[SENDER]][_auth] >= _value, "Insufficient allowance");
251 allowed[_addr [SENDER]][_auth] = allowed[_addr[SENDER]][_auth].sub(_value);
252 3}
253
254 ’*
255 balances are modified regardless of if the transfer involves a
256 custodian, to keep sum of balance mapping == totalSupply
257 */
258 balances[_addr[SENDER]] = balances[_addr[SENDER]].sub(_value);
259 balances[_addr [RECEIVER]] = balances[_addr [RECEIVER]].add(_value);
260
261 i (_rating[SENDER] == © &a [id[SENDER] I= ounerID) {
262 /* sender is custodian, reduce custodian balance */
263 custBalances[_addr [RECEIVER]][_addr [SENDER]] = (
264 custBalances[_addr [RECEIVER]] [_addr [SENDER]].sub(_value)
265 Ve
266 3}
267
268 i (_rating[RECEIVER] == 0 s |HORECEIVERJMISNGWRERID) {

pc

opcode
PUSH1
PUSH1
MSTORE
PUSH1
CALLDATASIZE
LT
PUSH2
JUMPI
PUSH4
PUSH1
PUSH1
EXP
PUSH1
CALLDATALOAD
DIV
AND
PUSH3
DUP2
EQ
PUSH2
JUMPI
DUP1
PUSH4
EQ
PUSH2

_images/gui5.png
Console | Scope

‘ ConvertLib.sol ‘ MetaCoin.sol pc
1pragna solidity >20.4.25 <0.6.0] 0
2 2
3import "./ConvertLib.sol"; 4
4
5// This is just a simple example of a coin-like contract. 5
6// It is not standards compatible and cannot be expected to talk to other 6
7// coin/token contracts. If you want to create a standards-compliant 7
8// token, see: https://github.com/ConsenSys/Tokens. Cheers! 8
o) 11
lecontract MetaCoin {
11 mapping (address => uint) [PENENGES; g2
12 14
13 event Transfer(address indexed _from, address indexed _to, uint256 _value); 15
14 16
15 constructor() public { 17
16 balances[tx.origin] = 10000; 18
g s
19 function sendCoin(address receiver, uint amount) public returns(bool sufficient) { 21
20 if (balances[msg.sender] < amount) return false; 22
21 balances[msg.sender] -= amount; 25
22 balances[receiver] += amount; 26
23 emit Transfer(msg.sender, receiver, amount);
24 return true; 28
25 3} 29
26 31
27 function getBalanceInEth(address addr) public view returns(uint){ 32
28 return ConvertLib.convert(getBalance(addr),2); 33
na o

38

Brownie GUI - MetacoinProject

yinx — Sflecury — Blueacon 9

opcode
PUSH1
PUSH1
MSTORE
CALLVALUE
DUP1
ISZERO
PUSH2
JUMPI
PUSH1
DUP1
REVERT
JUMPDEST
el
PUSH1
CALLDATASIZE
LT
PUSH2
JUMPI
PUSH1
CALLDATALOAD
PUSH1
SHR
DUP1
PUSH4
EQ

_images/gui2.png
X X J Brownie GUI - TokenProject

e s | Select Report

Token.sol | SafeMath.sol | pc opcode
a3 348 SUB
44 function allowance(349 PUSH1
45 address _owner, 351 ADD
46 address _spender 352 SWAP1
a) 353 RETURN
48 public
49 A 810 JUMPDEST
50 returns (uint256) 811 CALLER
51 { 812 PUSH1
52 return allowed[_owner][_spender];
53 3}
54
55 function approve(address _spender, uint256 _value) public returns (bool) {
56 Allovied[nsg. Sender][spender] = value;
57 emit Approval(msg.sender, _spender, _value);
58 return true;
59 3}
60
61 function transfer(address _to, uint256 _value) public returns (bool) {
62 balances[msg.sender] = balances[msg.sender].sub(_value);
63 balances[_to] = balances[_to].add(_value);
64 emit Transfer(msg.sender, _to, _value);
65 return true;
66 3}
67
68 function transferFrom
69 address _from, g 839 DUP1
70 address _to, 840 DUP6

824 PUSH1 0x40 841 MSTORE

_images/gui3.png
X X J Brownie GUI - TokenProject

Console | Scope Select Report ken
Token.sol SafeMath.sol pc opcode

1pragma solidity >=0.4.22; 1553 SWAP1
;lihrary safeMath { 1554 Jump
< 1555 JUMPDEST
4 function add(uint a, uint b) internal pure returns (uint c) {
5 c=a+b; 1556 PUSHL
6 require(c >= a); 1558 DUP3
7 3 1559 DUP3
8 function sub(uint a, uint b) internal pure returns (uint c) { 1560 GT
e e T 1561 ISZERO
11 1562 PUSH2
12 function mul(uint a, uint b) internal pure returns (uint c) {
13 c=a*hb; 1566 PUSH1
14 require(a == 0@ || ¢ / a == b); 1568 DUP1
ig %unctian div(uint a, uint b) internal pure returns (uint c) { A5ES (HaY=R
17 require(b > 0); 1570 JUMPDEST
18 c=a/b; 1571 POP
19 3 1572 SWAP1
20} 1573 SUB
1574 SWAP1
1575 JUMP
1576 JUMPDEST
1577 DUP2
1578 DUP2
1579 ADD
1565 JUMPI
offsets: 236, 251 1580 DUP3

Target: 1570 1581 DUP2

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/file.png

